

Journal of Technology Innovations and Energy ISSN: 2957-8809

https://doi.org/10.56556/jtie.v1i2.134

www.jescae.com
28

Analytical Framework of Cloud Homomorphic Encryption / Cryptographic Logic

Obfuscation for Cyber Health Hygiene

Akhigbe-mudu Thursday Ehis1*

1Africa Institute of Science Administration and Commercial Studies Lome-Togo

Corresponding author: Akhigbe-mudu Thursday Ehis, akhigbe-mudut@iaec-university.tg

Received: 01 January, 2022, Accepted: 02 April, 2022, Published: 15 April, 2022

Abstract

Hacking and the resulting disaster have become so dangerous that developers and organizations are taking extra

precautions to reduce their incidence and impact. A drift is any gap between the code and the cloud. Ad hoc adjustments

can, of course, result in environment instability, deployment challenges, unpredictably high costs, and security or

compliance gaps. The risk of configuration drift becoming a permanent fixture is one of the most important considerations

on this study. One such strategic strategy to mitigate these behaviors and render it unavailable to tracking, interpretation,

and use by hackers is logic obfuscation. This study presents two strategies for combating piracy and overbuilding attacks.

First, the proposed algorithms, then the logic obfuscation develop to hide the functionality and implementation of a design

by inserting gates onto the original design. The attackers can use circuit extraction from the gate-level netlist but they

won’t be able to deduce the obfuscated logic functions. As a result, the proposed obfuscation technique in this brief not

only resists image processing but also incurs low area and power overhead.

Keywords: Cloud Encryption; Cryptographic Algorithm; Cyber hygiene; Data at Rest; Homomorphic Encryption, Logic

Obfuscation

Introduction

For many individuals and businesses, security is a key

consideration when selecting a public cloud provider.

Encryption in transit and at rest, which ensures that data

can only be accessed by authorized roles and services with

proven access to encryption keys, is at the heart of many

security strategies. This document appears to capture the

fundamental understanding of encryption and

cryptographic primitives, which sounds intriguing. Rich

theory started to emerge, establishing cryptography as a

discipline and a mathematical study. This point of view has

influenced how researchers think about computer security

in general. Designing and employing codes that permitted

two groups to communicate while keeping those messages

hidden from eavesdroppers who could monitor

communication between them was the old cryptography.

The hard drive acts as a communication channel through

which the attacker can listen and read the contents if he or

she has access to it. Although "sharing" a key is simple, the

user requires a secure and reliable method of remembering

/ storing the key that will be used over time. In order to

write a legal definition, one must consider what is vital in

the current crisis and what external structures are necessary

(Jonathan and Yehuda, 2020). This section introduces a

skewed view of computer privacy as a starting point for a

study of current encryption. It demonstrates how this

definition may be used to achieve perfect privacy while

avoiding the unlikely consequences mentioned earlier, and

how a short key can be used to encrypt numerous large

communications. An explicit binding of the high chance of

success of an enemy running for a certain period of time or,

more precisely, investing a specified amount of

computational work gauges the security of a cryptographic

system. Any definition of security has two parts: a

description of what constitutes a system "break" and a

description of the adversary's capabilities. Computer

secrecy presents two complete secrets: first, confidentiality

is guaranteed exclusively to victorious opponents; second,

the secret has a small possibility of "failing." This is how

to ensure message integrity by detecting any fraudulent

messages or disruptions sent over an unprotected

communication channel using cryptographic techniques

(Gamma et al., 2021). It's easy to believe that encryption

addresses the message verification problem. This is for odd,

erroneous reasons, such as the opponent being unable to

alter the secret message in any logical way because

ciphertext totally masks the message content. The message

verification code's aim is to prevent the enemy from

altering or inserting a new message into a message sent

from one person to another unless the recipient notices that

the message is not from the intended recipient (Lama

Alhathally et al., 2020). What's important to remember is

that what defines a good message is entirely dependent on

the application. This chapter explores the cryptographic

primitive with numerous applications in addition to the

existing secure communication problem: Cryptographic

hash functions are a type of cryptographic hash function.

There are numerous applications for non-conflict hash

algorithms expanding the message code verification with

https://doi.org/10.56556/jtie.v1i2.134
http://www.jescae.com/
mailto:akhigbe-mudut@iaec-university.tg

Journal of Technology Innovations and Energy

www.jescae.com
29

another approach – a standard like Hash Based Message

Authentication (HMAC). Between the private writing

fields and the public key, hash operations can be seen as a

duplicate. Hash functions are increasingly widely utilized

in cryptography, and they're frequently used in situations

where far stronger structures are required than collision

resistance. Hash functions are simple jobs that condense

long, unfocused input into short, focused output. In the air,

non-collision hash functions are the same; the purpose is to

avoid conflict. A explicit collision resistance policy is built

into cryptographic hash functions. Because it is impossible

to encrypt solid code of every potential key using the

necessary amount of memory, hash key functions

overcome this technological challenge (Kotsiopoulo et al.,

2021).

What is Code Obfuscation?

Hacking and the resulting disasters have become so

dangerous that developers and organizations are taking

extra precautions to reduce their incidence and impact. The

use of code obfuscation is one such strategic strategy that

keeps administered codes out of the hands of malicious

actors. Code obfuscation comprises remodeling certain

characteristics of at-work codes in order to make them

inaccessible to tracking, interpretation, and usage by

cybercriminals while remaining functional for the

developers. The changes to metadata/instructions can be

made without affecting the final output that the targeted

code provides for application development. Using this

method, developers can make the application/program

more resistant to hacking attempts. This method performs

admirably on all available code kinds.

What is Encryption

Encryption is a process that takes legible data as input

(often called plaintext), and transforms it into an output

(often called ciphertext) that reveals little or no information

about the plaintext. The encryption algorithm used is

public, such as the Advanced Encryption Standard (AES),

but execution depends on a key, which is kept secret. To

decrypt the ciphertext back to its original form, you need

to employ the key. At Google,for instance, the use of

encryption to keep data confidential is usually combined

with integrity protection; someone with access to the

ciphertext can neither understand it nor make a

modification without knowledge of the key. In this paper,

we focus on encryption at rest. By encryption at rest, we

mean encryption used to protect data that is stored on a disk

(including solid-state drives) or backup media

(Sarigiannidis et al., 2021).

What is Data at Rest?

Data at rest refers to data in any digital form that is stored

in a computer. This data type is now dormant, as it is not

being transmitted between devices or between network

points. This information is not actively used by any app,

service, tool, third-party, or employee (Panagiotis et al.,

2021). At rest isn't a data state that lasts forever. When

someone requests a file, the data is transferred across a

network and becomes in-transit data. The data enters the

in-use state once someone (or something) starts processing

it. Both structured and unstructured data can be found in

data at rest. The following are some examples of places

where a firm can store data at rest: (i) Hard drives and

solid-state drives (SSDs) in PCs and laptops. (ii) Database

servers. (iii) The cloud, (iv) In a colocation facility

operated by a third party and so on. Unlike individual in-

motion packets travelling via a network, static data storage

often has a logical structure and meaningful file names.

Data at rest often contains the company's most sensitive

and confidential information, such as: (i) financial

documents (past transactions, bank accounts, credit card

numbers, etc.). Intellectual property (ii) (product

information, business plans, schematics, code, etc.). (iii)

Contacts, (iv) Marketing information (user interactions,

strategies, directions, leads, etc.). (v) Personal information

about employees and customers. (vi) Information on

healthcare. Companies frequently replicate files in

virtualized environments at rest, backup drives to off-site

facilities, allow employees to take laptops home, and

communicate data via portable devices, among other things.

Data encryption should be used to protect the privacy and

security of data at rest. Encryption is the process of

translating a piece of data into seemingly meaningless text

an unauthorized person (or system) cannot decipher (figure

1).

Figure 1: Encryption of Data at rest

Encrypting data at rest is critical for data security, and it

reduces the risk of data loss. In most circumstances,

symmetric cryptography is used to encrypt data at rest.

Unlike asymmetric encryption, where one key scrambles

data (public key) and the other decrypts files, the same key

encrypts and decrypts the data (private key). When speed

and responsiveness are important, as they are with data at

rest, security teams commonly use symmetric

cryptography. Unfortunately, data encryption isn't just a

precautionary measure. At-rest encryption is an important

part of cybersecurity since it ensures that data is not easily

accessible to hackers. As cybercriminals develop more

sophisticated methods for gaining access to and stealing

corporate information encrypting data at rest has become a

mandatory measure for any security-aware organization

(Manuel et al 2018).

What is Cyber Hygiene?

Cyber hygiene refers to the habits and activities that

computer and other device users take to keep their systems

healthy and secure online (Miamantou et al., 2021). These

procedures are frequently followed as part of a routine to

protect one's identity and other personal information from

http://www.jescae.com/

Journal of Technology Innovations and Energy

www.jescae.com
30

being stolen or tampered with. Cyber hygiene, like

physical hygiene, is practiced on a daily basis to protect

against natural deterioration and common dangers.

WHAT IS CLOUD ENCRYPTION?

The technique of encoding or modifying data before it is

sent to cloud storage is known as cloud encryption (Felix

and Isaac, 2021). You're probably already aware that

encryption employs mathematical techniques to convert

simple data (plaintext), such as a text, file, code, or image,

into an unreadable form (ciphertext) that can be hidden

from unauthorized or harmful users. It's the simplest and

most important technique to ensure that your cloud data

isn't hacked, stolen, or viewed by a bad party. Cloud

storage companies encrypt data and offer customers with

encryption keys. When necessary, these keys are utilized

to safely decrypt data. Decryption is the process of

converting encrypted data into readable data. There are six

distinct areas of the cloud computing environment where

equipment and software require significant security

attention, as indicated in Figure 2. (Alexandria 2021).

These six aspects are: (1) data security at rest, (2) data

security in transit, (3) user/application/process

authentication, (4) robust data separation between

customers, (5) cloud legal and regulatory challenges, and

(6) incident response. Cryptographic encryption

technologies are unquestionably the finest solutions for

safeguarding data at rest. Hard drive manufacturers are

currently releasing self-encrypting drives that follow the

trustworthy computing group's trusted storage standards

(Degabriele and Paterson 2010). These self-encrypting

disks have encryption technology, allowing for automated

encryption at a low cost and with minimal performance

impact. Although software encryption can be used to

protect data, it slows down the operation and makes it less

secure because an adversary may be able to take the

encryption key from the machine without being detected.

Figure 2: Shows six specific Areas of the Cloud Computing Environment Where equipment and Software Require

Security Attention

 Statement of the Problem

Most experts agree that encryption is the most effective

method for protecting data in the cloud, but it is difficult to

implement. For as long as software developers have been

writing software, organizations have been working to

eliminate misconfigurations in their environments.

Configuration drift in the cloud is unavoidable. Even

businesses with the best of intentions, who have worked

through cloud adoption scenarios and built their

infrastructure on well-architected frameworks, frequently

encounter deviations from their baseline. When the actual

known state of the infrastructure differs from the previous

defined configuration, configuration drift happens. Drift

can be caused by manually adding or removing resources,

as well as making modifications to existing resource

definitions. It can also be caused by a variety of automation

techniques. Drift isn't inherently bad in and of itself, but

given the different severity of effects and the speed of the

cloud, awareness is critical, as is having a mechanism in

place to resolve unintentional, costly cloud

misconfigurations.

Drift can be defined as any code-to-cloud gap, but it doesn't

mean all out-of-state configuration changes expose your

infrastructure. Ad hoc adjustments can, of course, result in

environment instability, deployment challenges,

unpredictably high costs, and security in compliance gaps

or annoyances to catastrophic production failures.

The risk of drift becoming a permanent fixture is one of the

most critical factors on this study. Not understanding why

and where a configuration was updated can result in

unmanaged blind spots when it comes to evaluating an

account's trust boundaries, such as locking its networking

http://www.jescae.com/

Journal of Technology Innovations and Energy

www.jescae.com
31

settings or identity-based rights. In a large scale, this can

lead to rifts in such borderlines, resulting in catastrophic

data breaches and losses. Consider intentionally opening a

port to the internet to troubleshoot DNS issues, or

providing role administrative privileges to complete a

complex database transfer process. There's a chance that

those settings established ad hoc using CLI and never

reverted after the project or bug was fixed, and they'll

become a permanent fixture.

Those are the types of drift that an adversary intending to

infiltrate an unprotected cloud asset could take advantage

of. On the other hand, not all drifts provide a genuine or

exploitable risk; in fact, some drifts may be planned. It's

crucial to understand the types of drift that can occur as a

result of dynamic infrastructure resource creation or

modification to fulfill scalability needs, especially before

automating your drift detection.

Literature Review

(Marain et al., 2021) Said that a lot of modern cryptography

is now built on solid mathematical underpinnings.

However, this does not negate the fact that the field is still

a work of art. The rigorous method allows for innovation

in establishing definitions that are appropriate for today's

applications and surroundings, proposing new

mathematical assumptions or inventing new primitives,

and constructing and demonstrating secure schemes. Of all,

even if cryptosystems are proven secure, there will always

be the art of attacking them. Modern cryptography's

approach has revolutionized the industry and helps to

ensure that cryptographic systems applied in the real world

are secure. However, it is critical not to exaggerate what a

demonstration of security entails. A proof of security is

always conditional on the definition and assumption(s) that

are utilized (Mladenav et al., 2020). The evidence may be

meaningless if the security promise does not match what is

required, or if the threat model fails to represent the

adversary's genuine capabilities. Similarly, if the

underlying premise proves to be incorrect, the proof of

security is useless. The takeaway lesson is that a scheme's

proved security does not always imply its security in the

real world (Jonathan and Yehuda 2020). While some have

seen this as a disadvantage of provable security, we see it

as a positive sign of the approach's robustness.

To attack a provably secure scheme in the actual world, all

that is required is a focus on the definition (that is,

determining how the idealized definition differs from the

real-world context in which the scheme is deployed) or the

underlying assumptions (i.e., to see whether they hold).

Cryptographers, on the other hand, must constantly revise

their definitions to make them more realistic, as well as

investigate their assumptions to see if they are correct.

Provable security does not eliminate the age-old conflict

between attacker and defender, but it does provide a

framework that helps the defender win.

One of the most often used integrated circuit (IC)

protection approaches is logic obfuscation. (Simiosoghlou

et al., 2020) Obfuscates IC designs by randomly inserting

additional key gates, according to a conventional

combinatorial logic obfuscation method proposed (XOR or

XNOR). The design's functional input is one of the inputs

to a key gate, while the other is a 1-bit key input. To

prevent attackers from accessing the proper key, it will be

placed in a tamper-evident memory within the design. The

obfuscated design will function correctly if you apply the

correct key. The IC can be protected from piracy and

overbuilding by using logic obfuscation. An opponent

could derive the key from the type of inserted gates if the

IC was purchased via image processing-based RE

(Jonathan and Yehuda 2020).

To circumvent this issue, the authors advocated replacing

an XOR gate with an XNOR gate and an inverter, and

similarly replacing XNOR gates with XOR gates and

inverters, and using de Morgan's law to relocate inversions

further up or down. Due to the logic redesign created by de

Morgan's rules, this solution has large area and power

overheads.

(Mladenov et al. 2020), (Diamantou et al., 2021), and

(Yufei and Abhari, 2022) give overviews of a wide range

of obfuscation and categorization strategies. On the

theoretical side, (Kotsiopuolo et al., 2021) is working on a

mathematical model for obfuscation. The most basic

strategies substitute equivalent expressions for sections of

expressions. Many of the tactics in Hacker's Delight can be

useful for obfuscation. Smart equivalences that are difficult

to discern are particularly intriguing (Stauch et al., 2022).

However, because they are used by popular obfuscators,

tools have been developed to precisely remove them

(Chaschatzis et al., 2022). Because some algorithms may

be identified simply by the presence of constant values

(Dimiros et al., 2022), strategies for encoding them have

been devised. Mixed-Boolean-Arithmetic and their

algorithmic creation are among them (Chausainov and

Moscholio 2021), and they look at efficient techniques of

constructing various equivalences and encodings that use

both logic and arithmetic operations. (Jilian Zhang 2016)

suggest opaque predicates to make program analysis more

difficult by making it difficult to tell which pathways in a

program are taken. Flattening the control flow graph

(Radiglou et al., 2021) is another way that has been

considered. (Boursiannis et al., 2021) Worked really hard

to improve this strategy. The effectiveness of the strategies

is assessed using symbolic execution (Felix and Isaac

2021), which is used in the evaluation. It can be used to

attack disguised code automatically (Illia Siniosoghu et al.,

2021). Not only must implementors be careful to

accomplish correctness and speed, but they must also avoid

timing and other side-channel leakage.

(Yufei and Abhari 2022) software, it will very certainly

struggle with post-quantum cryptographic software's

latency. Space and time constraints have always created

significant research obstacles for cryptographers, and they

will continue to do so for post-quantum cryptographers. On

the plus side, cryptography research has yielded numerous

impressive speedups, and further research efforts in post-

quantum cryptography should continue to yield impressive

speedups. Despite substantial cryptanalytic efforts, the

(Alexandria, 2021) hash-tree public-key signature system

and (Felix and Isaac, 2021) code public-key encryption

http://www.jescae.com/

Journal of Technology Innovations and Energy

www.jescae.com
32

scheme were both proposed thirty years ago and remain

essentially unchanged. Many other hash-based and code-

based cryptography candidates are much more recent;

multivariate-quadratic cryptography and lattice-based

cryptography provide even more new post-quantum

cryptography candidates. There have been several specific

suggestions that have been broken. Perhaps a new system

will be broken the moment a cryptanalyst takes the time to

examine it. One may insist on employing tried-and-true

systems that have stood the test of time. However, many

users cannot afford traditional systems and must instead

examine newer, smaller, faster systems that take advantage

of more recent cryptographic technology. To maintain trust

in these systems, the community must ensure that

cryptanalysts have spent time looking for vulnerabilities.

These cryptanalysts, in turn, must learn post-quantum

cryptography and get experience with post-quantum

cryptanalysis.

The RSA public-key cryptosystem began as a one-way

trapdoor function called "cube modulo n." (An interesting

historical note: Rivest, Shamir, and Adleman employed

huge random exponents in their initial paper (Paisias et al.,

2021). Small exponents, such as 3, are hundreds of times

faster, as (Radoglou et al., 2021) pointed out.)

Unfortunately, a trapdoor one-way function cannot be used

in the same way as a safe encryption function. Modern

RSA encryption must first randomize and pad a message

modulo n before cubing it modulo n (Pliatso et al 2021).

Furthermore, it encrypts a short random string instead of

the message to accommodate large communications, and

then uses that random string as a key for a symmetric

cipher to encrypt and authenticate the original message. It

took many years to build the infrastructure around RSA,

and there were numerous disasters along the way.

Research Methodology

This paper addresses the fundamentals of cloud computing

with its challenge: “Security” in two folds:

(i) It proposes an algorithm for encrypting data

at rest before transmitting it for storage in the

cloud.

(ii) Logical Obfuscation: Logic Obfuscation

hides the functionality and the

implementation of a design by inserting

additional gates into the original design.

PROPOSED ALGORITHM

The proposed algorithm is to encrypt the data on the client

side before transferring it to be stored in the cloud. This

will translate the obvious text into ciphertext and prevent

data theft by the intruder. That is, even if the attacker is

unable to block the data, he will not be able to read the

actual data or get a logical explanation from it. The

algorithm is equipped with a table of ASCII Codes and

Binary Representation codes with zero Padded for easy

calculation

Table 1a: ASCII Codes

Encryption Algorithm

1. Convert the letter to its ASCII code

http://www.jescae.com/

Journal of Technology Innovations and Energy

www.jescae.com
33

2. Convert ASCII code to its 8-bit binary number. If it does

not equal 8 bits, add the previous 0s.

3. Find 1 complement to the last 4 pieces.

4. Convert the generated binary code to the ASCII

character and transfer it to the cloud.

Example: Suppose we want to send a ‘C’ over the cloud.

First, we convert the plain text ‘C’ to its ASCII code i.e.,

67 uses (table 1). Then we convert 67 to its 8-bit binary

number. 67 in binary says 1000011 but since it is not equal

to 8 bits, add 1 preceding 0 to get 01000011. This is

indicated by (Included Binary Representation Codes No

zero). Then we get the completion of 1 of the last 4. This

will give us 01001100. Finally, we convert this 8 binary

number into its ASCII code letter, ‘L’.

B. Decryption Algorithm

1. Get the ASCII code for the character.

2. Convert ASCII code to binary. Add the previous 0s if

they are not equal to 8 bits.

3. Subtract the last 4 bits from the 8-digit binary generated.

4. Convert binary generated value to ASCII code.

The real character (blank text) is a letter similar to the

ASCII code. Using the example above to convert cipher

text into plain text:

First, convert the cipher 'L' text to ASCII code which is 76.

76 and then convert it to binary to get 1001100 but since it

does not equal 8 bits, add the previous 0 to get 01001100.

Then we undo the last 4 bits. to get 01000011 and convert

this binary number to its ASCII equivalent. The original

character or plain text is a character similar to the generated

ASCII code.

ASCII table

ASCII stands for American Standard Code for Information

Interchange. Computers can only understand numbers, so

the ASCII code is a numerical representation of a character

such as 'a' or '@' or an action of some kind. Below the

tables (Tables 1a and 1b) are ASCII characters tables and

this includes descriptions of the first 32 unpublished

characters. ASCII was actually designed to be used with

teletypes so the definitions are unclear. When someone

says you want your CV but in ASCII format, all this means

you are looking for 'blank' text that has no formatting such

as tabs, bold or highlighting - a raw format that can be

understood by any computer.

Table 1b: Extended ASCII Codes

Zero-Padded Binary Representation

Convert an integer to a binary string of a specific length

in Java

This post will discuss how to convert a number into a

binary character unit of a certain length in Java. The

solution should attach to the left the binary string with the

leading zero. There are several ways to convert a whole

number into a binary format in Java:

community category NumberFormatUtils {

Public static String longToBinString (val ende) {

 char [] buffer = new character [64];

 Arrays.fill (buffer, '0');

 because (int i = 0; i <64; ++ i) {

 long mask = 1L << i;

 uma ((ival & imaski) == imaski) {

 buffer [63 - i] = '1';

 }

 }

 replace new String (buffer);

http://www.jescae.com/

Journal of Technology Innovations and Energy

www.jescae.com
34

}

public static void main (String ... args) {

 long term =

0b00

00

00

00

00

 System.out.println (total);

 System.out.println (Long.toBinaryString (value));

 System.out.println

(NumberFormatUtils.longToBinString (value));

}

}

Output: 5,

101 :

00

000000000000000101

3.15 (1). Using the String.format () method

To find a binary string of a specific length with leading

zeros, we can use the String () class formatting method as

follows:

Public class Numberformatutils {

Public static string longTobinstring (long val) {

Arrays fill (buffer;’0’);

For (int i=0; i<64; ++i){

Long mask =iL<<I;

If (val & Mask)==mask){

Buffer[63-i]=’I’;

}

2. Using StringBuilder:

class Main

{

 public static String toBinary(int x, int len)

 {

 StringBuilder result = new StringBuilder();

 for (int i = len - 1; i >= 0 ; i--)

 {

 int mask = 1 << i;

 result.append((x & mask) != 0 ? 1 : 0);

 }

 return result.toString();

 }

 public static void main(String[] args) {

 System.out.println(toBinary(1000, 16));

 }

}

Output: 0000001111101000

3.16 (2). Using StringBuilder:

class Main

{

 Public Binary Stable (int x, int len)

 {

 StringBuilder Result = New StringBuilder ();

 because (int i = len - 1; i> = 0; i--)

 {

 int mask = 1 << i;

 result.put ((x & mask)! = 0? 1: 0);

 }

 return result.to String ();

 }

 public static void main (String [] args) {

 System.out.println (toBinary (1000, 16));

 }

}

Output: 0000001111101000

Drift Detection Manually

The drift detection scan is operational from time to time,

depending on the interval set in the description. (Default

1800 seconds, or 30 minutes.) There may be times when

you know that files in the directory have changed and you

need a summary to be created quickly, but you do not want

to change the intermission permanently. Just use manual

detection scanning (Figure 3).

 1. Click the Inventory tab in the top menu.

 2. Search the app.

 3. Click the Drift tab.

 4. Select the drift definition to use for scanning.

 5. Click the Get Now button

http://www.jescae.com/

Journal of Technology Innovations and Energy

www.jescae.com
35

Figure 3: Manual Configuration Drift Detection.

Mathematical Operation Encoding

The simplest method of obfuscation is to integrate

mathematical operations by inserting equally strong solid

terms that are not visible. Using consistent terminology

makes it easy to evaluate the overhead he will appeal to,

and by attaching it to unwanted words of the same size, the

cost of each shift becomes constant. Because the switch

expression will be used instead of the first term, the

operating time title is equal to the maximum size and can

also be calculated using the above (Figure 4a & 4b). Not

all changing words contain not only mathematical words

but may also introduce constants, depending on the gross

calculation. This may need to be considered in padding.

Book (Stauch et al., 2022) provides a rich list of such

changes. In Chapter Additive Addition and Logical

Performance, many equals of arithmetic integration,

subtraction, and denial and all logical operations are clearly

presented and proven.

x + y = x - (¬y + 1)

x + y = (x ∨ y) + (x ∧ y)

x + y = (x ⊕ y) + (x ∧ y) • 2

All these changes are the same in that the same complex

versions contain both logical and arithmetic functionality.

This is common among complex strategies, as it is often

difficult to reverse logical expressions and statistics

without building a value table. To replicate the same

dynamic expressions that complement these mixing

conditions can also be found:

x ∗ y = (x ∨ y) • (x ∧ y) + (x ∧ ¬y) • (y ∧ ¬x)

x ∗ y = (x ∨ y) • (x ∧ y) + ¬ (¬x ∨ y) • (x ∧ ¬y)

The dynamics of these changing expressions depend on the

known equations in the analytical tools and development

strategies used. By using equilibrium that mixes logical

and arithmetic words, this is achieved to some degree.

However, because all of these expressions are fixed, this

equation can be easily facilitated by using pattern matching

methods.

 (a)

 (b)

Figures 4a & 4b: Example of Operation Encoding:

Encoding of 180 + 6 to the equal Equation 180 − (¬6 + 1)

Logic obfuscation

Logic obfuscation hides performance and application

design by adding additional gates to the original build. In

order for the design to reflect its correct function (i.e.,

produce the correct output), a valid key must be assigned

to the incomprehensible design. Blurred gates are key gates.

When you use the wrong key, the blurred design will show

the wrong performance (i.e., the wrong output). Consider

the cycle shown in Figure 5 using the " 1B " and " 2B "

key gates. I0 - I5 input is active and Gate1A and Gate2B

are the key connected to the key gates. Using the correct

key values (Gate1A = 0 and Gate2B = 1) the design will

produce the correct; otherwise, it will produce the wrong

output.

http://www.jescae.com/

Journal of Technology Innovations and Energy

www.jescae.com
36

Figure 5: A Circuit Obfuscated Using two keys –gates Gate 1A and Gate 2B, based on the technique proposed (Jilian

Zhang, 2016).

By using the 100000 input patterns, the attacker can notify

the Gate1A and Gate2B key pieces in Exit 1B and Output

2B and view their values.

Definition (attack):

Consider the Gate1A key input in Figure 5. It will be

notified on the output of Output1B if the value in one of

the G6 input is 0 (uncontrolled gate value OR). This can be

achieved by setting input (I1 = 1, I2 = 0 and I3 = 0). As the

attacker has access to the active IC, one can use this pattern

and determine the value of Gate1A in Output1B. For

example, if the Output1B value is 0 in that input pattern,

then Gate1A = 0, otherwise Gate 1A = 1. This problem is

similar to the problem of reporting errors in the presence

of unknown values — X can prevent / hide the spread of

error (Alexandria 2021). Key bits Gate 1A and Gate 2B are

equal to X sources, as in Figure 5. Similarity and error

difference between keystrokes and key distributions: Both

purposes require an input pattern that alerts the effect /

error key by blocking the result in some or all sources of X

/ other key fragments, and to prevent their interference.

Result and discussion

Consider the effective cycle illustrated in Figure 5 with two

key gates, 1B and 2B in different locations. Here, if the

attacker has to broadcast the result of any key, then one has

to force `0 '(uncontrolled number of gates NOR) in one of

the Gate 4 inputs. To force this number, one has to control

the main input, which is inaccessible. So one cannot

distribute the key effect of the output, failing to determine

the key values. Depending on the location of the key gates,

different strategies should be used to propagate the key

effect. This is the case with a combination of logic

obfuscation, as mentioned earlier, when XOR / XNOR

gates are introduced to hide design performance (Caspar et

al., 2021). Obfuscation is also performed by inserting

memory elements (Sariagiannidis et al., 2021). A circuit

only works properly if these elements are properly aligned.

However, using memory features will add even more

important functionality.

Conclusion

In this brief, we have thoroughly analyzed current

computer security strategies and developed an effective

and efficient way to integrate intelligence to prevent theft,

over-construction, and RE attacks. Although attackers may

not be able to extract a gate-level netlist with a circuit-

based release of retractable engineering tools (RE), they

cannot predict obscure logical operations. The only way is

to fully evaluate the entire OC configuration with an

unreachable brute-force attack. Therefore, our proposed

obfuscation process in this brief not only contradicts RE-

based image processing but also encapsulates lower space

and higher power.

Acknowledgement

Having an idea and turning it into writing is as hard as it

sounds. The experience is both internally challenging and

rewarding. I especially want to thank the individuals that

helped make this happen. Complete thanks to Mrs

Josephine Ohens and Mrs Omonigho Akhanolu Casey for

their financial support. I will always welcome the chance

to represent you.

Thank you to everyone who strives to grow and help others

grow. It is the business version of the Lion King Song,

“Circle of Life”.

I want to thank God most of all, because without God I

wouldn’t be able to do any of this.

Declaration of interests

The author declare that he has no known competing

financial interests or personal relationships that could have

appeared to influence the work reported in this paper.

References

Caspsar Chorus; Sander Van Cranenburgh; Aemiro

Melkamu Daniel; Erlend Dancke Sandof’ Anae

Sobhani; Teodora Szep (2021): “ Obfuscation

Maximization Based Decision Making : Theory,

Methodology and First Empirical Evidence”.

Journal of mathematical Social Sciences 109

(2021) 28 - 44.

https://doi.org/10/1016/mathsocsci.2020.10.002

V. Mladenov; V. Chobanov; P. Sarigiannidis; P.I.

Radohlou- Grammatikis; Hristov A. and P. Zlatev

(2020): “Defense Against Cyber Attacks on the

Hydro Power Plant Connected in Parallel with

Energy System”. Jounal (2020 12th Electrical

Engineering Faculty Conference, BULEF 2020,

Publisher: IEEE

Siniosoghlou; G. Eftstathopoulos; D. Pliatsios; I.D.

Moscholos; A. Sarigiannidis, G. sakellari and

Loukas G and P. Sarigiannidis (2020): “ Neuralpot:

An Industrial Honeypot Implementation Based on

Deep Neural Networks.’ Proceedings –IEEE

Symposium on Computers and Communications.

https://doi.org/10.1109/ISCC.50000.2020.921971

2.

Jonathan Katz; Yehuda Lindell (2020); “Introduction to

Modern Cryptography. (3rd ed) chapman and Hall

{CRC}, https://doi.org/10.1201/9781351133036

http://www.jescae.com/
https://doi.org/10/1016/mathsocsci.2020.10.002
https://doi.org/10.1109/ISCC.50000.2020.9219712
https://doi.org/10.1109/ISCC.50000.2020.9219712
https://doi.org/10.1201/9781351133036

Journal of Technology Innovations and Energy

www.jescae.com
37

Alexandria V.A (2021): “The Cyber Defense Review,

2019 International Conference on Cyber Conflict

U.S { CYCON U.S } Volume 5, No. 1, Spring 2020

Felix Bentil; Isaac Lartey (2021): “Cloud Cryptography –

A security Aspect. International Journal of

Engineering Research and Technology (IJERT)

Volume 10, Issue 05, May 2021, pp. 448-450

Illias Siniosoglou; Panagiotis Rodoglou-Grammatikis and

Georgios E; Efstathopoulos; Panagiannids Fouliras

and Panagiotis Sarigiannidis (2021): “A Unified

Deep Learning Anomaly Detection and

Classification Approach for Smart Grid

Environments”. IEEE Trabsaction Networks and

Service Management (2021), Volume 1, No. 1,

2021,

https://doi.org/10.1109/TNSM.2021.3078381

T. Kotsiopoulos; P. Sarigiannidis; D. Ioannidis and D.

Tzovaras (2021): “Machine Learning and Deep

Learning in Smart Manufacturing: The Smart Grid

Paradigm. Journal of Computer Science Review,

Volume 40, page 100341.

https://doi.org/10.1016/j.cosrev.2020.100341

I. Siniosoglou ; V. Argyriou; S. Bibi, T. Lagkas and P.

Sarigiannidis (2021): “ Unsuspervised Ethicak

Equity Evaluation of Adversarial Federated

Networks.” The 16th International Conference on

Availability, Reliability and Security. Pages 1-6

https://doi.org/10.1145/3465481.3470748

P.Diamantou Lakis ; P. Bouzinis; P. sarigiannidis; Z. Ding

and G. Karagiannidis (2021): “ Optimal Design

and Orchestration of Mobile edge Computing with

Energy Awareness. IEEE Journals of Transaction

on Sustainable Computing. Volume 1, No. 1, 2021.

https://doi.org/10.1109/TSUSC.2021.3103476

Yufei Ding, M. Javadi- abhari (2022): “Quantum and Post-

Moore’s Law Computing. IEEE Internet

Computing, Vol. 26, pages 5-6.

https://doi.org/1o/10.1109/mic.2021.3133675

M.Stauch; P. Radoglou-Grammatikis; P. Sarigiannidis; G.

Lazaridis; A. Orosu; I. Nwankwo; and D. Tzovaras

(2022); “ Data Protection and Cyber Security

Activities and Schemces in the Energy Sector.

Journal of Electronics. Volume 11, No.06.

https://doi.org/10.3390/electronics.11060965

C. Chaschatzis; C. Karaiskou; E. Mouratidis; E.

Karagiannis; P. Sarigiannidis (2022); “ Detection

and Characterization of Stressed Sweet Cherry

Tissues Using Machine Learning. Journal of

Drones. Volume 6, No. 3, (2022),

https://doi.org/10.3390/drones6010003

Dimirios Pliatsios; Sotitios K. Goudos, Thomas Lagkas ;

Vasileios Argyriou; Alexandrias Apostolos; A.

Boulogeorgos and Panagiotis Sarigiannidis (2022);

“ Drones Based station for Next Generation

Internet of Things; A comparison of Swarm

Intelligence Approaches. IEEE Open Journal of

Antennas and Propagation.

https://doi.org/10.1109/OJAP.2021.3133459

I.A Chausainov and I. Moscholios and P. sarigiannidis and

M. logothetis (2021): “Multi Service Loss Models

for Cloud Radio Access Networks. IEEE Journal

of Access.

https://doi.org/10.1109/ACCESS.2021.3105946

P. Radoglou- Grammatikis; P. sarigiannidis; E. Iturbe; E.

Rios ; S. Martizez ; A. sarigiannidis and G.

Eftsathoupoulos and I. Spyridis and A. Seis and N.

Vakalis and D. Tzo Varas and E. Kafetzakis and I.

Giannidis and M. Tzifas and A. Giannoulakis and

M. Tzifas and A. Giannakoulias and M. Tzifas and

A Giannakoulis and M. Angelopoupous and F.

Tamos (2021): “ SPEAR SIEM: A Security

Information and Event Management System for

the Smart Grid. Journal of Computer Networks

2021, pages 108008,

https://doi.org/10.1016/j.comnet.2021.1080008

A.D Boursiannis; M.S. papadopoulou; J. Piaezon; V.C.

Mariani; l.S. Coelho and P. Goudos (2021):

“Multiband Patch Antenna Design Using Nature

Inspired Optimization Method. IEEE Open journal

of Antennas and Propagation, Volume 2, pp. 151 –

152, 2021.

 https://doi.org/10.1109/OJAP.2020.3048490

A. Paisias, T. Kotsiopoulos; G. lazaridis; A.drosu; D.

Tzovaras. P. Sariagiannidis (2021): Enabling

Cyber- Attacks Mitigation Techniques in a

Software Defined Networks. Proceedings of the

2021 IEEE International Conference on Cyber

Security and Resilence. (CSR 2021) PP. 497 – 502.

https://doi.org/10.1109/csrs1186.2021.9527932

D. Pliatsios; P. Sarigiannidis; k. Psannis; S.K. Goudos; V.

Vitsas; I. Moscholios (2021): “Big Data Against

Security Threats: The SPEAR Intrusion Detection

System,” 2020 3rd World symposium on

Communication Engineering [WSCE] 2020. Pages

12-17.

https://doi.org/10.1109/wsce.51339.2020.9275580

Jiliang Zhang (2016): “A Practical Logic Obfuscation

Technique for Hardware Security.” IEEE

Transactions on Very Large Scale Integration

(VLSI) Systems 24(3), 1193 - -1198.

https://doi.org/10.1109/TVLSI.2015.2437996.

J. P. Degabriele and K.G. Paterson (2010). “On the (in)

security of IPsec in MAC-then-encrypt

configurations”. In 17th ACM Conf. on Computer

and Communications Security, pages 493–504.

ACM Press, 2010.

Manuel Cheminod; Luca Durante; Lucia Seno; Adriano

Valenzano (2018): “Performance Evaluation and

Modelling of an Industrial Applications Layer

Firewall”. IEEE Transactions on Industrial

Informatics. Volume 14, No.5, pp. 2159-2170. May

2018.

 https://doi.org/10.1109/TII.2018.2802903.

Panagiotis Radoglou-Gammaliks; Panagiotis

Sariagiannidis, Eider Iturbe; Erkuden Rios, et al.,

(2021): Spear Siem: A security Information and

Event Management System for the Smart Grid”.

Computer Networks”.Volume193, July

2021,108008, pages1-26.

http://www.jescae.com/
https://doi.org/10.1109/TNSM.2021.3078381
https://doi.org/10.1016/j.cosrev.2020.100341
https://doi.org/10.1145/3465481.3470748
https://doi.org/10.1109/TSUSC.2021.3103476
https://doi.org/1o/10.1109/mic.2021.3133675
https://doi.org/10.3390/electronics.11060965
https://doi.org/10.3390/drones6010003
https://doi.org/10.1109/OJAP.2021.3133459
https://doi.org/10.1109/ACCESS.2021.3105946
https://doi.org/10.1016/j.comnet.2021.1080008
https://doi.org/10.1109/OJAP.2020.3048490
https://doi.org/10.1109/csrs1186.2021.9527932
https://doi.org/10.1109/wsce.51339.2020.9275580
https://doi.org/10.1109/TVLSI.2015.2437996
https://doi.org/10.1109/TII.2018.2802903

Journal of Technology Innovations and Energy

www.jescae.com
38

https://doi.org/10.1016/j.comnet.2021.108008

Marcin Wojnakowski; Remiguisz Wisniewski; Grzegorz

Bayzydio and Mateusz Poplawskwi (2021):

“ Analysis of Safeness in a Petri Nets Based

Specification of the Control Part of Cyber-physical

systems. International Journal of Applied

Mathematics and Computer Science 2021, Volume

31, No.4, 647-657. https://doi.org/10.34768/amcs-

2021-0045.

Lama Alhathally; Mohammed A. Alzain; Jchad Al-Amri;

Mohammed Baz; Mehedi Masud (2020): Cyber

Security Attacks: Exploiting Weaknesses.

International Journal of Recent Technology and

Engineering (IJRTE) ISSN:2277-3878, Volume 8,

Issues-5, January 2020, pp.906-913.

Gammal E.I Selim; Ezz El-Din Hemdan; Ahmed M.

Shehatta; Nawal A. El-Fishawy (2021): “An

Efficient Machine Learning Model for Malicious

Activities Recognition in Water-Based Industrial

Internet of Things. Journal Security and Privacy,

Volume 4, pp.1-14, Issue 3, May/June 2021.

https://doi.org/10.1002/spy2.154.

Frederick Weigang Pan and Matthew Caesar (2016):

Salmon: Robust Proxy Distribution for Censorship

Circumvention. Proceedings on Privacy Enhancing

Technologies”. 2016(4): 4-20.

https://doi.org/10.1515/popsets-2016-0026.

http://www.jescae.com/
https://doi.org/10.1016/j.comnet.2021.108008
https://doi.org/10.1016/j.comnet.2021.108008
https://doi.org/10.34768/amcs-2021-0045
https://doi.org/10.34768/amcs-2021-0045
https://doi.org/10.1002/spy2.154
https://doi.org/10.1515/popsets-2016-0026

