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Abstract 

Online reviews serve as social proof for potential customers, promoting confidence in businesses. The online 

marketplace is expanding rapidly on a global scale, with consumers increasingly relying on internet reviews. This 

influence is especially significant in the digital age, where customers often rely on the opinions of others to guide 

their purchasing decisions. As these reviews play a crucial role in shaping purchase decisions, some unethical 

companies are motivated to fabricate and distribute misleading evaluations. Deceptive reviews are fabricated 

evaluations produced with the intention of appearing real and misleading the consumers. Those deceptive reviews 

can be detected manually based on their patterns which are seen in their linguistic and psychological aspects. 

However, the deep learning techniques proposed outperform all conventional approaches and offer higher self-

adaptability to extract the desired features implicitly. For the purpose of detecting false reviews, we have suggested 

a Deep Neural Network (DNN) based Deceptive Review Detection Model (DRDM) method. 

 

Keywords: Deceptive reviews; Deep learning; Convolutional neural network; Word embedding; Unsupervised 

Learning; Long Short-Term Memory (LSTM) 

 

Introduction

 

Online user-generated reviews for a wide range of goods and services have dramatically increased over 

the past few years across numerous websites. These evaluations include numerous in-depth information 

as well as the users' individual opinions. Before making decisions, we frequently refer to various user 

reviews, including where to eat, what to purchase, where to stay, and other decisions. Since these reviews 

play a vital role in online businesses, their importance is also increased. Untrustworthy businesses have 

a motivation and opportunity to create and post bogus reviews, either in support of themselves or in 

dislike of competitive competitors. As instances of deceptive reviews increase, the need for detection of 

those deceptive reviews increases. There are many research works which have been monitoring these 

types of fake reviews and creating models to identify those. It has been shown that nearly 95% of 
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consumers decided to purchase after reading online reviews and the product which has at least five 

reviews has a 270% greater possibility to be purchased than the commodities with no reviews. The lack 

of the gold standard dataset, however, is the primary issue with employing any classifier Alberto et al. 

(2015). To the best of our knowledge, there are very few publicly accessible gold standard datasets Islam 

et al. (2018), Rastogi et al. (2017). Other studies have employed synthetic data gathered from crowdsourcing 

websites or hand labeling Ali et al. (2023). However, as numerous studies have noted, it is a tedious and 

time-consuming effort to manually identify any genuine or fraudulent review to a reasonable degree 

Zhang et al. (2018). In a different labeling strategy, crowdsourcing websites like Amazon Mechanical 

Turk (AMT) are used to create synthetic data and its label. They don't, however, accurately reflect spam 

reviews. Furthermore, Turkers' work was not commendable due to a lack of effort and topic knowledge 

Saha et al. (2023). Additionally, probabilistic techniques like Unsupervised Bayesian approach Ren et al. 

(2017) and Hidden Markov models Alam et al. (2021) were used to address the labeled dataset problem. 

The goal of this project is to use Long Short-Term Memory (LSTM) and Deep Neural Network (DNN) 

networks to provide an efficient method for identifying fraudulent reviews on internet marketplaces. The 

study intends to improve the accuracy and dependability of differentiating phony evaluations from real 

ones by utilizing LSTM's capacity to extract contextual information and long-term dependencies in 

sequential text data. It handles issues like dataset imbalance and domain adaptation, assesses the LSTM 

model's performance against conventional machine learning techniques, and investigates important 

aspects like semantic, syntactic, and contextual patterns. The ultimate goal of the research is to address 

the ethical implications of such systems while offering a reliable and scalable solution for practical 

applications. 

The rest of the paper is organized as follows. The Literature Review is discussed in Section 2. In Section 

3, we introduce the Research Objectives. The methodology of the proposed model for spam review 

detection is discussed in section 4. Section 5 presents the findings and Data Analysis. Finally, Section 6 

concludes the whole paper. 

 

Literature Review 

 

Researchers have put out a number of methods for detecting deceptive or dishonest reviews in recent 

years. The identification of spam in emails Jindal et al. (2008) and web texts Feng et al. (2012) has been 

extensively studied in the past. By comparing the language structures of truthful and dishonest reviews 

using the deception theory Akoglu et al. (2013) illustrated how difficult it is to identify dishonest 

evaluations based on their structural characteristics, such as lexical complexity. A supervised classifier 

(Logistic Regression) employing features based on review text, reviewer profiles, and product 

descriptions was proposed by Jindal et al. (2010). The majority of these studies concentrated on 

extracting the more detailed textual elements in order to enhance deception detection ability. However, 

the challenges of producing human-labelled data and the incapacity of hand-crafted features to capture 

non-local semantic information over a conversation prompted the development of a number of other 

approaches, such as those utilizing user   behavioral elements and semi-supervised learning. By utilizing 

syntactic features from context-free-grammar parse trees, Feng et al. (2012) improved performance while 

using the syntactic stylometry technique. Jindal et al. (2008) proposed an unsupervised framework to 
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detect the spammers and spam reviews. They exploited the network effect between the products and its 

reviewers, for example, the spammers are mostly linked to a bad product with positive reviews and vice-

versa. The network-based architecture assigned a score for review and reviewer upon which it was 

labelled as spam or real. Li et al. (2017) proposed a probability-based language modelling and Kull- 

back–Leibler (KL) divergence technique for fake review detection. They used the syntactical, lexical and 

stylistic features for model evaluation, extracted from the dataset of Amazon. They found that around 

2% of the total consumer reviews in their dataset are fake. Wang et al. (2016) proposed an unsupervised 

approach “GSLDA” for group spamming detection in online review data. It works in two phases, first, it 

clusters the closely related group spammers into a small-sized reviewer cluster by adapting latent 

Dirichlet allocation (LDA) to the product review context and secondly, from each small-sized cluster, it 

extracts the high-suspicious spammer groups. 

 

Research Method 

 

Data preparation 

 

To evaluate and educate an AI system, we need to work on datasets. Any model will take inputs from datasets and 

give output. Those outputs will be observed and correct outputs will be stored in the system. After preceding 

numerous data; system will be more accurate. Hence, a system will be developed. 

 

Deceptive opinion dataset 

 

It contains 400 real and 400 fake reviews of both positive and negative sentiments respectively of twenty individual 

hotels in Chicago Li et al. (2017).  

 

YelpZip Dataset 

 

The YelpZip dataset Fusilier et al. (2015) is made up of real-world reviews of hotels and restaurants that were 

taken as samples from Yelp and combined with almost accurate information provided by the Yelp review filter. 

YelpZip shows reviews of 5044 hotels from 260,277 users in different neighborhoods of New York. 

 

Neural Network Models 

 

There are numerous neural network models and architectures, each designed for specific tasks and applications. 

Here are some of the most well-known and widely used neural network models: Feedforward Neural Networks 

(FNN): Also known as Multi-layer Perceptron (MLP). Composed of an input layer, one or more hidden layers, and 

an output layer. Commonly used for tasks like classification and regression. 

Convolutional Neural Networks (CNN): Primarily used for image-related tasks. Utilizes convolutional layers to 

automatically learn spatial hierarchies of features. Well-suited for tasks like image classification, object detection, 

and image generation. Recurrent Neural Networks (RNN): Designed to work with sequential data. Utilizes recurrent 

connections to maintain memory of past inputs. Often used in natural language processing (NLP) and time series 

analysis. 

 



Journal of Technology Innovations and Energy 

  Global Scientific Research    47 
 

Word Embedding 

 

A neural network is used in the popular natural language processing method known as Word2vec to learn word 

embeddings which are distributed representations of words. It is used in text analysis, language translation, text 

classification, and information retrieval. Similar words are clustered together in the vector space because these 

embeddings accurately represent a word's semantics. Continuous bag-of-words (CBOW) and skip-gram are the 

two primary model architectures used by Word2vec. While skip-gram is an unsupervised learning technique which 

predicts the surrounding words based on the context of the current word, CBOW predicts the current word based 

on the context of the surrounding words. 

 

LSTM Model 

Input Layer: The input to the LSTM model is a sequence of data points or tokens, such as words in a sentence or 

time steps in a time series. Each data point is represented as a feature vector. LSTM Units (Cells): The core building 

blocks of an LSTM model are the LSTM units, also known as cells. These cells maintain an internal state and are 

responsible for learning and remembering information over long sequences. An LSTM cell typically consists of 

three gates: 

Forget Gate: It decides what information from the previous cell state should be thrown away or kept. 

Input Gate: It decides what new information should be stored in the cell state. 

Output Gate: It decides what information should be exposed as the output of the cell. 

 

 

 

 

 

 

 

 

 

 

    

 

Figure 1: LSTM Architecture 

Proposed Model 

 

First Data Preparation is needed. Deceptive opinion dataset is chosen from sample dataset. Operation of preprocess 

the text data by tokenizing the reviews, removing stop words, and performing other text cleaning operations should 

be performed. Here, Word2Vec is chosen as a pre-trained word embedding model which can capture semantic 

information of words. Then loading of the pre-trained word embedding’s into the model takes place. Conversion 
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of each review into a fixed-length representation using word embedding’s should be done. This can be done by 

LSTM. After training the model with the proposed dataset; evaluation of the model's performance on the test set 

using metrics such as accuracy, precision, recall, F1-score is taken into account for preparing it for the real-world 

environment. 

This diagram illustrates the flow of data through the neural network, where word embedding’s are passed through 

an LSTM layer to capture the sequence information, followed by max pooling. Remember that in practice, one 

may need to fine-tune the architecture, hyper parameters, and data preprocessing steps to achieve the best results 

for your specific dataset and task. Additionally, techniques like data augmentation, assembling, and hyper 

parameter tuning to improve model performance can be done. 

To understand the network structure we built in this article, a one layered and a multi-layered stacked LSTM 

network have been shown in Fig. 1 and 2 respectively. A one-layer architecture of LSTM model is incorporated 

by a single hidden LSTM layer (LSTM1) followed by an output layer whereas, the stacked architecture of LSTM 

model is incorporated by multiple hid- den LSTM layers (LSTM1 and LSTM2) (2 layers in this case). Similarly, 

a three- layered LSTM network can be formed by stacking LSTM1, LSTM2, and LSTM3. The stacking of layers 

adds levels of abstraction of input observations over time. LSTM1 generates a sequence output at each time step 

instead of single output at the final step. These sequential outputs per input time steps act as inputs for the LSTM2. 
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Figure 2: Deceptive Review Detection Model (DRDM) 
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Data Analysis 

Evaluation of accuracy 

Model Accuracy Precision Recall F1-Score 

Baseline 0.85 0.90 0.80 0.85 

DRDM 0.92 0.94 0.91 0.92 

CNN-B 0.91 0.93 0.90 0.91 

LSTM- C 0.89 0.92 0.88 0.90 

Table 1: Accuracy Count 

 

Here, we can see DRDM is slightly better than CNN-B and LSTM-C IN F1-score, accuracy, precision and recall. 

 

Conclusion 

 

Here, experiment is done to obtain an AI based model based on LSTM for determining deceptive reviews. 

Accuracy has been tested with various model with two datasets. This model will improve itself with the 

improvement of computer hardware. The text sequence will pass word embedding then LSTM layer. It will be 

modified with max pooling and it will be in output Soft Max layer. The proposed model will help to distinguish 

between deceptive reviews and the real ones. Detecting spam reviews (or comments) is a difficult undertaking. 

The lack of the labelled dataset is the primary problem in this particular area of study. To close this gap, we 

suggested an unsupervised method that predicts the review's class (spam or authentic) without the need for label 

information. To accomplish the goal, the current model employs an auto encoder and clustering. The duplicate 

review is not recognized as spam by the suggested model. This implies that the system does not consider a review 

to be spam if it is posted for many goods. A pre-filter is needed to find these reviews. In the future, a system that 

integrates the existing model in a pipeline with the duplicate review filter might be created. In order for a review 

to be deleted if it is discovered to be duplicate, it must first pass through a filter for duplicity identification; if not, 

it will go through the current system. 
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