

Journal of Environmental Science and Economics

ISSN: 2832-6032

Global Scientific Research

www.jescae.com

Journal of Environmental Science and Economics

Vol. 3, No.1 (2024)

Chief Editor	Dr. Hayat Khan
Edited by	Global Scientific Research
Published by	Global Scientific Research
Email	thejesae@gmail.com ; journals.gsr@gmail.com
Website	www.jescae.com
Journal Link:	https://www.jescae.com/index.php/jescae

CONTENTS

S.NO	TITLE	AUTHORS	PAGE
1	Influences of foreign direct investment and carbon emission on economic growth in Vietnam	Asif Raihan	1-17
2	Climate change and its impacts in rural areas of Pakistan: a Literature review	Abdul Rasool Khoso, Jintu Gu, Shahnaz Bhutto, Muhammad Javed Sheikh, Kainat Vighio, Arshad Ali Narejo	18-26
3	Correlation or Causation: Unraveling the Relationship between PM2.5 Air Pollution and COVID-19 Spread Across the United States	Mohammad maniat, Hosein Habibi, Elham Manshoorinia, Parisa Raufi, Payam Marous, Masoud Omraninaini	27-41
4	The Threshold level of Institutional Quality in the Nexus between Financial Development and Environmental Sustainability in Nigeria	Grace Oje	42-64
5	Exploring the link between technological innovation, economic development, and CO2 emissions in the US. Application of the ANN and EKC techniques	Seun Adebawale Adebajo, Wasiu Babajide Akintunde	65-77
6	Navigating a Greener Future: The Role of Geopolitical Risk, Financial Inclusion, and AI Innovation in the BRICS – An Empirical Analysis	Mohammad Ridwan, Sarder Abdulla Al Shiam, Hemel Hossain, Shake Ibna Abir, Shaharina Shoha, Md Shah Ali Dolon, Afsana Akhter, Hasibur Rahman	78-103

RESEARCH ARTICLE

Influences of foreign direct investment and carbon emission on economic growth in Vietnam

Asif Raihan

Institute of Climate Change, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia

Corresponding Author: Asif Raihan: asifraihan666@gmail.com, ORCID ID: 0000-0001-9757-9730

Received: 04 October, 2023, Accepted: 20 November, 2023, Published: 01 January, 2024

Abstract

Over the course of the previous three decades, Vietnam has seen a phase of economic growth, resulting in the influx of foreign direct investment (FDI). However, it is essential to note that there was an extensive rise in carbon dioxide (CO₂) emissions throughout this period. The objective of this research is to analyze the impact of FDI and CO₂ emissions on Vietnam's economic growth, utilizing time series data from 1990 to 2021. The stationarity of the data was assessed using unit root tests, while an autoregressive distributed lag (ARDL) procedure was utilized to examine the long- and short-run associations between the components. Based on the research outcomes, it is seen that a marginal rise of one percent in both FDI and CO₂ emissions is associated with a corresponding long-term gain of 1.36 percent and 1.11 percent in gross domestic product (GDP). Furthermore, in the short term, these increments yield an increase of 0.61 percent and 0.29 percent in GDP. The conclusions of this study will provide valuable insights for policymakers in crafting policies that effectively promote sustainable development. Specifically, these policies would aim to strike a balance between capital growth derived from foreign investments and economic expansion, while concurrently mitigating carbon emissions.

Keywords: Economic growth; FDI; Environmental degradation; CO₂ emissions; Sustainable development

Introduction

Over the last few years, Vietnam's economy has witnessed a rapid expansion. The country experienced a notable rise in its GDP per capita, which escalated from 1562 US dollars in 2010 to 3561 US dollars in 2020. The government has set an ambitious objective of achieving a GDP per capita of 7500 US dollars by the year 2030. FDI shows a crucial function in both the early stages of an economy's development and its later stages of industrialization, modernization, and the establishment of a knowledge-based economy (Quoc & Thi, 2018; Raihan, 2023a). The aforementioned statement can be attributed to the observation that FDI shows a crucial function in fostering economic expansion through the augmentation of overall investment capital (Raihan & Voymik, 2022a). Vietnam, a nation situated in Southeast Asia, is currently through a process of economic transition characterized by industrialization and modernization (Raihan, 2023b). Vietnam's economic growth has been greatly influenced by the substantial influx of foreign capital, a trend that has been observed since the enactment of the Law on Foreign Investment in 1978. The allocation of these money has resulted in the promotion of exports and the improvement of human resources and technology. The attraction of FDI shows a pivotal function in the advancement of Vietnam's economic and social infrastructure (Nguyen et al., 2022).

The significant increase in FDI flowing into Vietnam since 1988 has been commonly perceived as indicative of the state's successful shift from a command economy to a market-oriented system, as noted by Cung (2020). The implementation of capital and FDI inflows into Vietnam has had a substantial increase over the years. From 1988, when it stood at US\$0.32 billion, to about US\$16.2 billion in 2023. This growth can be attributed to the introduction of the Doi Moi reform program in 1986. Since then, FDI inflows into Vietnam have displayed an average annual growth rate of 15.4 percent (Nguyen et al., 2022). Vietnam has had significant advantages as a result of foreign direct investment throughout this time frame. These measures encompass enhancing Vietnam's capital and production capacity, strengthening export endeavors, generating employment opportunities, and facilitating the transfer of both tangible and intangible assets, such as technology and international knowledge. FDI is often considered a significant determinant in the economic advancement of emerging nations, exemplified by the case of Vietnam. The correlation between FDI and economic growth has been a subject of significant scholarly attention within the realm of international development studies. In the context of volatile global capital flows, FDI has emerged as a dependable avenue for promoting accelerated growth in underdeveloped nations. The promotion of foreign direct investment is crucial for the mobilization and sustainable utilization of capital. However, it is imperative to adopt a cautious approach in formulating regulations that take into consideration the unique characteristics of each stage of development. Hence, it is imperative to analyze the influence of FDI on the economic enhancement of Vietnam.

The rapid economic growth experienced by Vietnam in recent decades has resulted in some notable impacts on the local ecosystem. Vietnam is presently grappling with notable environmental challenges, with global warming emerging as the most pressing concern, despite the country's notable economic achievements (Begum et al., 2020; Raihan et al., 2023a). Vietnam persistently exhibits a concerning lack of awareness on the importance of protecting a sustainable ecosystem. According to Raihan et al. (2022a), there has been an approximately sixfold rise in the total quantity of CO₂ emissions over the course of the past three decades. The rate of CO₂ emissions in Vietnam is experiencing a significant and concerning upward trend. The majority of CO₂ emissions are generated by coal-fired electricity bases (Raihan et al., 2022b; Voumik et al., 2022; Sultana et al., 2023a). It is projected that by the year 2020, the energy industry in Vietnam will produce an estimated annual carbon dioxide emission of 224 million tons, whereas other significant industries are expected to create roughly 10 million tons.

Vietnam has made a commitment to achieve carbon neutrality by the year 2050. In the pursuit of sustainable development, it is imperative to achieve a harmonious equilibrium between fostering GDP growth and sustaining the inflow of FDI to ensure the maintenance of stable levels of carbon emissions. Vietnam, akin to numerous other nations, endeavors to attain sustainable economic growth and development that upholds environmental integrity and avoids burdening future generations with any adverse consequences. To achieve this goal, it is imperative to protect the integrity of the ecosystem (Raihan, 2023c; Raihan, 2023d; Raihan, 2023e; Raihan, 2023f; Raihan, 2023g; Raihan, 2024a). The research undertaken on the relationship between CO₂ emissions and economic growth has incorporated multiple studies examining the influence of economic progress on CO₂ emissions (Raihan & Tuspeková, 2022a; Raihan et al., 2022c). However, there is a scarcity of study about the impacts of CO₂ emissions on the progress of economic development. This article makes a scholarly contribution by analyzing the influence of environmental degradation, specifically carbon dioxide emissions, on the economic growth of Vietnam.

The total volume of FDI in Vietnam exhibited a consistent annual growth pattern. Furthermore, there was a pointed simultaneous expansion in both the pace of economic expansion and the emission rate. One pertinent inquiry regarding the social milieu is to the potential correlation between the surge in FDI and CO₂ emissions in Vietnam, and the concomitant rise in economic advancement. In view of this, a research study was undertaken in Vietnam spanning the years 1990 to 2021, with the aim of examining the immediate and enduring impacts of FDI and CO₂ emissions on GDP. The stationarity and stability of the variables were verified through the implementation of three unit root tests. Additionally, the ARDL technique was employed to establish the associations between these variables and their long- and short-term causal dynamics. The findings of this research will specify constructive

visions for legislators in crafting policies that effectively promote sustainable development. Specifically, these insights would help policymakers strike a delicate equilibrium between capital growth derived from foreign investments, economic expansion, and the imperative to mitigate carbon emissions.

Literature Review

Due to the rising concern about global warming and climate change (Raihan & Said, 2022; Raihan & Himu, 2023; Raihan & Bijoy, 2023; Raihan, 2023h), a considerable body of literature has been dedicated to exploring the liaison between CO₂ emissions and GDP (Raihan, 2023i; Raihan et al., 2023b). According to Bello et al. (2018), there exists a U-shaped inverted relationship between CO₂ emissions and economic prosperity. However, it is seen that the positive alliance between economic evolution and CO₂ emissions tends to decrease once the economy achieves a particular level of development. This assertion can be adequately evaluated since a rise in income levels is often associated with an improvement in the standard of living, which in turn tends to result in an increased requirement for ecological excellence (Raihan, 2023j).

The interconnections between nations in relation to economic endeavor and commerce have prompted scholarly investigations into possibilities concerning the liaison between pollution, economic outgrowth, and trade integration. Grossman and Krugger (1995) conducted the primary inquiry into the relationship between the Carbon Index and its impact on economic progress. The authors posited that the mitigation of trade obstacles and the amplification of economic endeavors will have an impact on the environment. This study additionally presents empirical evidence to evaluate the comparative magnitude of these three consequences through the implementation of trade liberalization in Mexico. In their study, Naranpanawa (2011) employed the ARDL method and Johansen cointegration procedure to examine the enduring association between economic development and the trading environment. The ends of this analysis suggest that there exists a transient association between business and CO₂ emissions. In a study conducted by Keho (2015), the ARDL model was employed to examine the enduring consequences of the ecological bearing resulting from universal trade in 11 nations within the Economic Community of West African States (ECOWAS) during the retro spanning from 1970 to 2010. The findings of this investigation led to the determination that global commerce is a significant contributor to environmental deterioration. In their study, Rahman and Kashem (2017) employed Toda and Yamamoto's causal model to examine the interrelationships among carbon emissions, energy consumption, and economic evolution in Bangladesh from the 1970s to the 2010s. The bulk of these research demonstrate a sustained relationship and a significant connection among the parameters. Furthermore, empirical research has demonstrated a significant positive association between the growth of GDP and the concurrent rise in CO₂ levels across the examined timeframe. Esso and Keho (2016) have demonstrated the existence of causal and enduring associations between energy use, CO₂ emissions, and economic advancement in diverse African states.

Alvarez-Herranz et al., (2017) utilized the Kuznets curve framework to assess the relationship between GDP and CO₂ emissions in a sample of 16 associate states of the Organization for Economic Cooperation and Development (OECD) throughout the retro from 1995 to 2016. The investigation outcomes imply that the presence of institutional misalliances during the energy development procedure negatively impacts ecological sustainability within economies. The study substantiated the Kuznets curve hypothesis and demonstrated that the proliferation of economic progress and the adoption of renewable power sources resulted in a reduction of environmental pollution across 17 OECD countries throughout the retro straddling from 1990 to 2012. In a research conducted by Sarkodie (2018), a sample of developing nations was utilized to examine the relationship between FDI and energy intensity. The findings of the study revealed a significant decrease in energy concentration as FDI levels grew. The aforementioned decline can be ascribed to the utilization of contemporary technology in conjunction with FDI, representing a significant advancement from the antiquated conventional technologies employed in other nations. This transition has resulted in a reduction of environmentally harmful emissions.

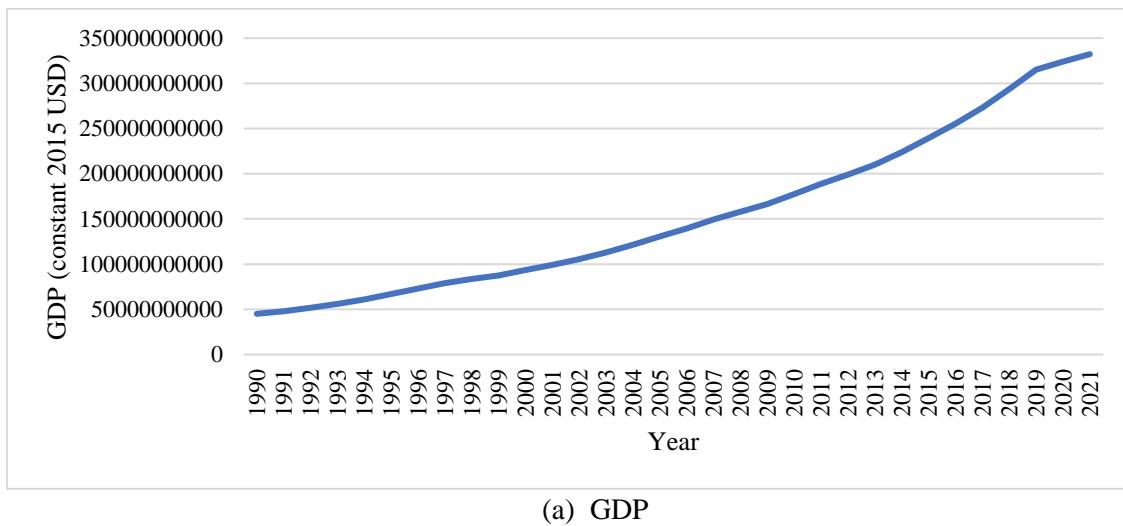
Several studies have investigated the correlation capital flows, between FDI, and ecological degradation in different countries or commercial regions. Frankel and Romer (2017) have conducted a study in which they found evidence suggesting that financial development and deregulation have the potential to attract FDI, drive economic growth, and thus enhance the dynamics of environmental performance. Shahbaz (2014) employed the ARDL framework to investigate the long-term relationships between renewables, FDI, natural resource trade, CO₂ emission, and GDP in the United Arab Emirates (UAE) during the period spanning from 1975 to 2011. The authors assert that there exists a correlation between these factors over a period of time. It has been determined that the process of trade integration and the influx of FDI are associated with a reduction in greenhouse gas (GHG) emissions. The phenomenon of economic expansion yields positive effects on energy use.

In their study, Hakimi and Hamdi (2016) examined the relationship between FDI inflows, trade openness, environmental attribute, and GDP in Tunisia and Morocco. They employed the Vector Error Correction Model (VECM) and cointegration techniques to analyze the data. This study posited that trade liberalization has resulted in mutual economic benefits for both economies, often leading to consequential impacts on CO₂ emissions. The research acted by Michieka et al. (2013) investigated the impact of energy exhaustion, trade, and monetary progress on the economic progression of China. The results suggest that the influence of economic and commercial development on pollution is significant, and it also has enduring consequences for CO₂ levels.

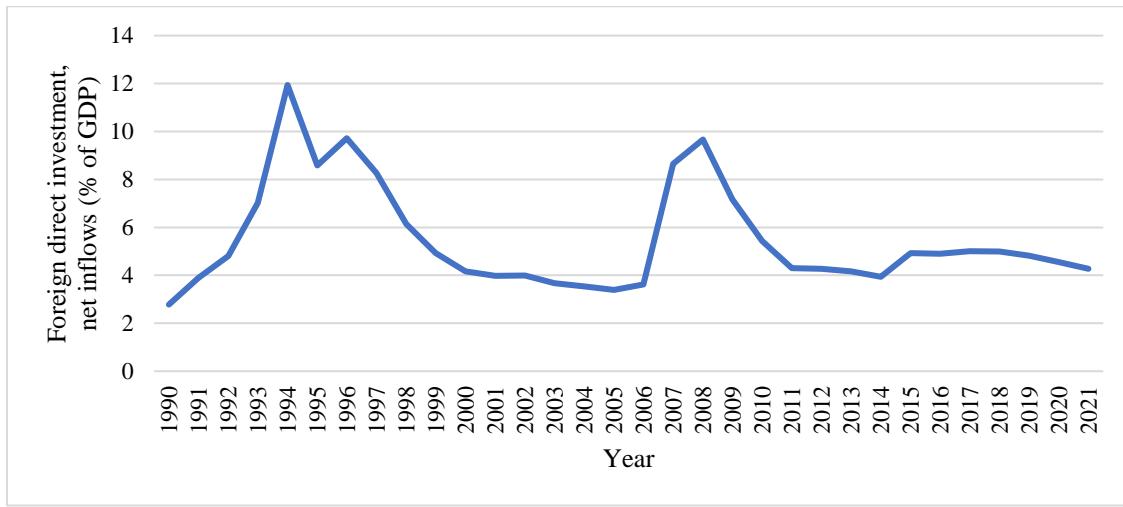
Corresponding to research accomplished by Ren et al. (2014), the substantial trade surplus and the influx of FDI are identified as the primary considerations providing to the significant rise in CO₂ emissions in China. In their study, Michieka et al. (2013) examined a sample including around 20 developing nations and saw a significant reduction in energy intensity in conjunction with the rise in foreign direct investment. The aforementioned fall can be ascribed to the adoption of contemporary technology in conjunction with foreign direct investment, representing a significant departure from the antiquated old technologies employed in other nations. This transition has resulted in a reduction of environmentally harmful emissions (Raihan, 2023k).

Soytas and Sari (2007) employed a VECM to assess the correlation between energy intake and the production divisions in Turkey. The conclusions of the analysis exhibit a significant and positive correlation between the parameters included in the model. Furthermore, the parameters inside the model exhibit a causal relationship. In 2009, the authors undertook an additional analysis utilizing the linear regression method to assess the correlation between economic expansion, energy consumption, and CO₂ emissions. The research findings also indicate the occurrence of a co-integration relationship amidst the parameter parameters. Furthermore, the research also revealed a lack of enduring correlation between CO₂ emissions and the advancement of economic progress. Hence, the investigation arrived at the determination that it is feasible to mitigate CO₂ emissions without impeding the pace of economic advancement. The findings of Öztürk and Acaravci's (2010) study exhibited analogous outcomes when employing the ARDL model and examining causality using authentic data from Turkey. The factors employed by the author encompassed energy, employment ratio, and emissions. The findings indicate a reversal of the Kunetz curve.

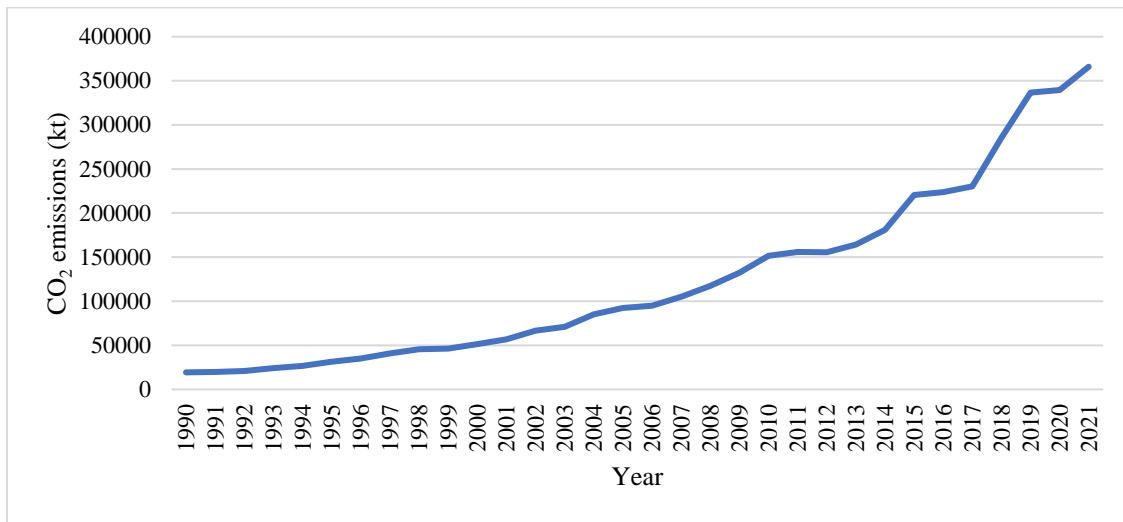
According to the findings of Begum et al. (2015), the empirical analysis conducted using the ARDL approach demonstrated a negative link between emissions and GDP in Malaysia between 1970 and 1980. Nevertheless, between 1980 and 2009, there was a prominent surge in per capita CO₂ emissions, which subsequently resulted in a corresponding rise in per capita GDP. The research findings indicate that the EKD hypothesis was shown to be invalid in Malaysia within the specified study duration. The conclusions of the study also indicate a significant and positive association between energy intake, GDP, and carbon emissions. The study additionally demonstrates that over an extended period, economic expansion can exert a detrimental influence on CO₂ emissions. Hence, the adoption of advanced technological gear and equipment that have little emissions (Raihan, 2023l), along with the utilization of alternative energy sources, will effectively mitigate emissions without compromising economic progress (Raihan, 2023m).


Numerous empirical studies have investigated the association between FDI, economic growth, economic integration, and CO₂ emissions. Nevertheless, there exist variations in research findings across different countries

with respect to the short-term and long-term impacts, the presence of cointegration relationships, and the positive and negative effects observed in the interplay between various components. In light of the divergent outcomes observed across nations, the author intends to undertake an empirical investigation aimed at assessing the interrelationship between the rate of GDP growth, CO₂ emissions, and FDI in Vietnam. The empirical findings have the potential to assist policymakers in striking a compromise between the reduction of CO₂ emissions, the augmentation of FDI attractiveness, and the attainment of economic growth in forthcoming periods.


Methodology

Data and empirical model


To assess the validity of the hypothesis pertaining to the association between the parameters, the methodology employed in this study involved the integration of ARDL bounds analysis with cointegrating regression investigation. The World Development Indicators (WDI) were specifically created to compile comprehensive time series data spanning the years 1992 to 2021. FDI is quantified as a proportion of the overall GDP, whereas CO₂ emissions are evaluated in terms of kilotons. Figure 1 illustrates the temporal trends of the variables.

(a) GDP

(b) FDI

(c) CO₂ emissions

Figure 1. The annually fads of GDP, FDI, and CO₂ emissions in Vietnam.

The present investigation employed a defined model at time t to illustrate the relationship between variables.

$$GDP_t = \tau_0 + \tau_1 FDI_t + \tau_2 CO2_t + \varepsilon_t \quad (1)$$

Here, τ_1 and τ_2 are the coefficients, though ε is the error term. The logarithmic function was utilized to enhance the clarity of the data by manipulating the variables.

$$LGDP_t = \tau_0 + \tau_1 LFDI_t + \tau_2 LCO2_t + \varepsilon_t \quad (2)$$

Stationarity check

The present study initially investigates the relationships between the response variable and its explanatory components in order to ascertain if the dataset exhibits stationarity at either integrated of order zero (I(0)) or integrated of order one (I(1)). Furthermore, it is not necessary for every regressor to exhibit a seasonal effect or be included with an order of one (Raihan & Tuspeková, 2022b; Raihan et al., 2023c). The avoidance of the I(2) sequence is deemed invalid and has the potential to generate misleading outcomes (Raihan & Tuspeková, 2023a; Raihan et al., 2023d). Furthermore, in the event that a variable exhibits nonstationarity, there is a possibility of obtaining erroneous results (Raihan et al., 2022d; Raihan & Tuspeková, 2023b; Raihan et al., 2023e). Nevertheless, the shift to I(2) is unparalleled, and the limited size of the sample raises apprehension (Raihan & Tuspeková, 2022c; Raihan et al., 2023f). The present study utilizes the Augmented Dickey-Fuller (ADF), Dickey-Fuller generalized least squares (DF-GLS), and Phillips-Perron (P-P) unit root tests in order to ascertain the absence of I(2) variables.

ARDL approach

The ARDL bounds testing technique for cointegration, as introduced by Pesaran et al. (2001), was employed to examine the enduring association between the parameters. The cointegration test mentioned in the text has several

advantages compared to standard approaches in terms of the order of integration (Raihan & Tuspekova, 2022d; Raihan et al., 2022e; Voumik et al., 2023a; Raihan et al., 2023g). If the parameters are determined to be stable at either the integrated of order 1 (I(1)) or integrated of order 0 (I(0)) level, or the I(1)/I(0) level, then this approach can be employed (Raihan et al., 2022f; Raihan & Tuspekova, 2022e; Raihan et al., 2022g). The ARDL bounds testing econometric study employs an adequate amount of lags inside a general-to-specific modeling framework in order to effectively represent the data creation process (Raihan et al., 2023h; Raihan, 2023n). The ARDL framework allows for the computation of the ARDL F-statistic, which serves as a means to assess the existence of cointegration across variables (Raihan et al., 2023i; Raihan, 2023o). This is achieved by considering several optimal lags for each variable, as discussed by Raihan and Tuspekova (2022f). The establishment of cointegration among variables can be determined if the ARDL F-statistic exceeds a preset upper critical threshold (Raihan, 2023p). If the F-statistic of the ARDL model is below the lower critical limit, it indicates that the variables under consideration are not cointegrated (Raihan, 2023q). When the F-statistic of the ARDL model is within the range of the upper critical bound and the lower critical value, the empirical findings may lack persuasiveness (Raihan & Tuspekova, 2022g; Raihan et al., 2023j). The ARDL bounds analysis method, which is commonly used for studying cointegration, can be described by the following approximation model:

$$\Delta \text{LGDP}_t = \tau_0 + \tau_1 \text{LGDP}_{t-1} + \tau_2 \text{LFDI}_{t-1} + \tau_3 \text{LCO2}_{t-1} + \sum_{i=1}^q \gamma_1 \Delta \text{LGDP}_{t-i} + \sum_{i=1}^q \gamma_2 \Delta \text{LFDI}_{t-i} + \sum_{i=1}^q \gamma_3 \Delta \text{LCO2}_{t-i} + \varepsilon_t \quad (3)$$

The symbol Δ represents the first difference operator, whereas the variable q denotes the optimal lag duration. The ARDL bounds testing approach has the capability to undergo linear transformation in order to derive the error correction model (ECM). Despite the use of very small sample sizes, this methodology produces dependable empirical findings (Raihan & Tuspekova, 2022h; Raihan, 2023r). In order to maintain a comprehensive outlook, the ECM integrates immediate intricacies with enduring stability (Raihan & Voumik, 2022b). The method employed in this study aims to ascertain the cointegrating vectors that arise from the empirical model when numerous cointegrating vectors are present (Raihan, 2023s). The symbol “ θ ” represents the coefficient of the ECM. The ECM exhibits a consistently positive value, seldom descending below 0 and never beyond 1. When the ECM exhibits a negative and statistically significant coefficient, it becomes imperative to address the variance in order to attain equilibrium (Raihan, 2024b). Following the establishment of the long-term relationship between the series, the investigation proceeded to calculate the short-run coefficients of the parameters utilizing Equation (4).

$$\Delta \text{LGDP}_t = \tau_0 + \tau_1 \text{LGDP}_{t-1} + \tau_2 \text{LFDI}_{t-1} + \tau_3 \text{LCO2}_{t-1} + \sum_{i=1}^q \gamma_1 \Delta \text{LGDP}_{t-i} + \sum_{i=1}^q \gamma_2 \Delta \text{LFDI}_{t-i} + \sum_{i=1}^q \gamma_3 \Delta \text{LCO2}_{t-i} + \theta \text{ECM}_{t-1} + \varepsilon_t \quad (4)$$

Results and Discussion

Table 1 presented below provides descriptive statistics. Grounded on the data that was collected and examined, it can be observed that the median and mean values of all parameters exhibit a high degree of similarity. All variables exhibit a normal distribution, as seen by their skewness values approaching zero, kurtosis values below three, and Jarque-Bera test statistics falling below their respective thresholds.

Table 1. Descriptive statistics

Variables	LGDP	LFDI	LCO2
Mean	25.59704	1.635640	11.37495
Median	25.62874	1.571155	11.44691
Maximum	26.52922	2.479851	12.81034
Minimum	24.53122	1.022927	9.869414
Std. Dev.	0.608397	0.356427	0.906434
Skewness	-0.119250	0.747708	-0.127089
Kurtosis	1.859924	2.674778	1.854348
Jarque-Bera	1.808874	3.122716	1.836166
Probability	0.404770	0.209851	0.399284

The initial step is verifying that the order one, I(1), encompasses the complete dataset, particularly the response parameters. The accomplishment of this task involves the analysis of the strong suit of link concerning response parameters and analyst parameters. Furthermore, it is deemed improper to incorporate all first-order regressors or to illustrate transient unit roots. The ADF, DF-GLS, and P-P tests for three-unit root were devoted to assess the parameter order and verify adherence to the precondition. The conclusions of the unit root tests are presented in Table 2. Based on the information displayed, it was observed that all assessed metrics exhibited stationarity at the initial discrepancy. The data are therefore fitting for the use of the ARDL estimator.

Table 2. The results of unit root examinations

Logarithmic form of the variables	ADF		DF-GLS		P-P	
	Log levels	Log first difference	Log levels	Log first difference	Log levels	Log first difference
LGDP	-0.581	-4.178***	-0.383	-4.385***	-0.418	-4.329***
LFDI	-0.499	-4.117***	-0.414	-3.966***	-0.277	-4.009***
LCO2	-0.262	-5.753***	-0.161	-4.715***	-0.786	-7.302***

*** stand for significance at 1% level

Following the confirmation of the reliability of the unit roots of the variable, this study employed the ARDL bounds test to analyze the characteristics of the variables' enduring association. The empirical findings of using the ARDL bounds testing method to cointegration are shown in Table 3. Based on the observation that the estimated F-statistic exceeded the upper critical constraint, the experimental results presented compelling evidence supporting the presence of long-term cointegration among the variables under investigation.

Table 3. Results of ARDL bounds analysis

F-bounds test		Null hypothesis: No degrees of relationship		
Test statistic	Estimate	Significance	I(0)	I(1)
F-statistic	13.854226	At 10%	2.63	3.35
K	2	At 5%	3.10	3.87
		At 2.5%	3.55	4.38
		At 1%	4.13	5.00

Following the establishment of a durable association, this research endeavor aims to assess both the long-term and short-term variables. The outcome of both the long- and short-term investigations are showed in Table 4. Based on the findings derived from the ARDL analysis, it can be concluded that FDI exerts a positive and statistically significant sway on GDP in both the short-term and long-term periods. In the context of this study, it has been observed that a marginal rise of 1 percent in FDI leads to a corresponding short-term gain of 0.61 percent in GDP,

while in the long term, this relationship is strengthened, resulting in a 1.36 percent increase in GDP. Trinh and Nguyen (2015), Quoc and Thi (2018), Cung (2020), and Nguyen et al. (2022) have together posited that FDI exerts a favorable impact on the GDP of Vietnam. The findings derived from the ARDL calculation provide empirical evidence that there exists a positive and statistically significant liaison between CO₂ emissions and GDP in both the short and long run. Given a fixed level of FDI, it can be shown that a 1% rise in CO₂ emissions leads to a subsequent increase in GDP by 1.11% in the long run and 0.29% in the short run. The ARDL research indicated a favorable relationship between elevated levels of CO₂ emissions and Vietnam's GDP. Raihan (2023b) provides empirical evidence that establishes a positive correlation between Vietnam's GDP and CO₂ emissions.

Table 4. ARDL results over the long and short term.

Variables	Long-run			Short-run		
	Coefficient	t-Statistic	p-value	Coefficient	t-Statistic	p-value
LFDI	1.361***	4.007	0.000	0.613***	3.102	0.001
LCO ₂	1.112***	3.089	0.000	0.291***	3.107	0.002
C	9.678	3.428	0.147	-	-	-
ECM (-1)	-	-	-	-0.601***	-3.692	0.000
R ²	0.9871					
Adjusted R ²	0.9765					

*** denotes significance at 1% level

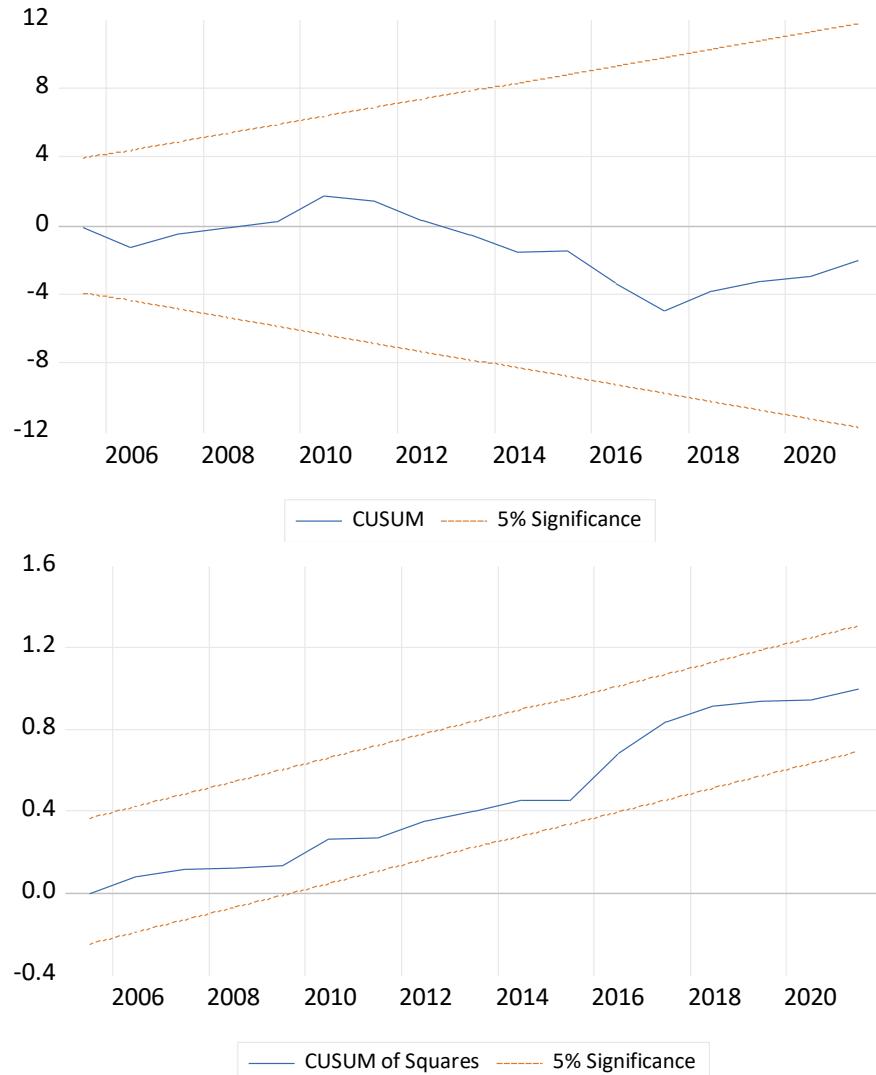

The findings of this inquiry indicate a statistically significant negative appraisal of ECM, as determined at the 1% significance level. The estimation of the ECM allows for the determination of both the magnitude and sign of the ECM. These indicators can be utilized to make inferences on the speed at which a structure advances from a state of short-run uncertainty to a state of long-run equilibrium. This finding suggests that the state of long-term equilibrium is achieved once 60 percent of the short-term errors have been rectified. Furthermore, the R² and adjusted R² values for the long-run evaluation are 0.9871 and 0.9765, respectively. These values suggest that the regression model provided in this study has a high level of conformity with the data. This finding suggests that the independent factors have the ability to explain approximately 97% of the variability observed in the dependent variable. Table 5 displays the empirical estimations of various diagnostic statistics. The application of the Jarque-Bera test can be employed to ascertain the uniform distribution of residuals. The Lagrange multiplier (LM) technique was employed to examine the issue of serial correlation. The LM test outcome suggests that the model does not exhibit any issues related to serial correlation. The Breusch-Pagan-Godfrey analysis was utilized to examine the presence of heteroscedasticity in the forecast model. Based on the findings, it can be concluded that the proposed model does not display heteroscedasticity. The determination of the model's validity was conducted through the utilization of the Ramsey reset test.

Table 5. The findings obtained from diagnostic examinations.

Diagnostic probes	Coefficient	p-value	Decision
Jarque-Bera analysis	0.406007	0.8162	The residuals have a normal distribution
Breusch-Godfrey LM analysis	0.724124	0.5009	There is no serial correlation
Breusch-Pagan-Godfrey analysis	0.885297	0.5707	There is no heteroscedasticity
Ramsey RESET analysis	0.396329	0.6971	The model is precisely described

This study assessed the structural stability of the model by employing the summation cumulative of recursive residuals (CUSUM) and squares of the summation cumulative of recursive residuals (CUSUMSQ) functions. Figure 2 illustrates the graphical representation of the CUSUM and CUSUMQ studies. For example, the stability of model parameters can be determined by assessing scatter plots that exhibit deviations from the critical limit of

no more than 5%. The graphs demonstrate that throughout the trial, the CUSUM and CUSUMSQ values consistently fell within the acceptable range of +/- 5%.

Figure 2. The findings of both the CUSUM and CUSUMQ analyses.

FDI is a significant macroeconomic determinant that exerts a profound impact on the process of economic development (Voumik et al., 2023b). The economy is directly impacted by various factors such as technological advancements, advancements in related fields, resource accumulation, and the manifestation of human inventiveness (Raihan & Tuspeková, 2022i). The aforementioned objectives are achieved by means of funding the deficit in the current account, facilitating investment finance for numerous host markets, generating positive externalities, integrating new managerial competencies across diverse sectors, and bolstering economic performance by generating a significant number of employment opportunities and government returns. Raihan and Tuspeková (2022j) posited that this phenomenon plays a significant role in fostering economic expansion. Hence, it is imperative for political and economic strategies to maintain a coherent connection between the growth of industries and the inflow of FDI. Vietnam continues to be a highly preferred destination for FDI. The attractiveness of the place for investments and its projected sustainability can be attributed to the indices of its macroeconomic environment and demographic composition, as elucidated by Nguyen et al. (2022). FDI has played a vital role in facilitating the advancement of Vietnam's machinery manufacturing, energy, computer, and telecommunications

sectors. These industries necessitate technological complexity and yield high-value output (Cung, 2020). The importance of the impact of FDI on a nation's exports and imports, foreign currency accessibility, and balance of payments has progressively amplified through time.

In the meanwhile, the observation that CO₂ emissions yield favorable outcomes for economic progress underscores the necessity for implementing suitable measures to mitigate pollution inside the nation, thereby fostering sustainable economic growth (Sultana et al., 2023b). The decrease of GHG emissions can be achieved by the simultaneous advancement of renewable power technologies and the optimization of energy resource utilization (Raihan & Tuspeková, 2022k; Voumik et al., 2023c; Raihan, 2023t; Raihan, 2023u; Raihan, 2023v, Raihan, 2023w). At present, the Vietnamese government has enacted several regulations with the objective of mitigating the emission of GHGs within the nation. The policies encompassed under the scope are the "National Strategy on Green Growth," the "National Strategy on Climate Changes," and the "National Target Programme on Energy Efficiency." Furthermore, the country has demonstrated significant engagement in international organizations and conferences, aiming to collaborate with other nations in tackling this pressing global concern. However, Vietnam's efforts to mitigate GHG emissions encounter several challenges. Several challenges exist, including inadequate financial support and investments, limited utilization of sophisticated technology, and a lack of interagency collaboration mechanisms. In order to attain sustained economic growth and development, Vietnam must surmount a range of challenges.

Conclusions and Policy Implications

This analysis aimed to investigate the potential dynamic relationship between FDI, CO₂ emissions, and the economic growth of Vietnam. The analysis utilized a dataset spanning from 1992 to 2021. The stationarity of the data can be assessed by employing unit root tests, such as the ADF, the DF-GLS, and the P-P tests. Furthermore, the ARDL methodology was applied to examine the correlation between the variables under both long-term and short-term analysis. Based on the research outcomes, it can be observed that a marginal augmentation of one percent in both FDI and CO₂ emissions is associated with a corresponding long-term growth of 1.36 percent and 1.11 percent in GDP. Additionally, in the near term, such increments in FDI and CO₂ emissions are linked to a rise of 0.61 percent and 0.29 percent in GDP, respectively. The conclusions of this inquiry will offer constructive comprehensions for legislators in crafting policies that effectively promote sustainable development. Specifically, these policies would aim to strike a balance between capital growth resulting from foreign investments and economic expansion, while concurrently mitigating carbon emissions.

The outcomes of the research indicate that FDI shows a pivotal function in the economic advancement of Vietnam. The compiled data formed the foundation for the obtained outcomes. In order to prioritize economic improvement and attract FDI, there is a tendency to routinely reduce environmental protection criteria below the acceptable threshold. As a result, FDI exerts a significant influence on the environment, necessitating the implementation of environmental rules by the Vietnamese government across the nation. The persistent enhancement of the public administration system has resulted in an ongoing transformation of the current governance frameworks. Various factors, such as Vietnam's membership in international trade organizations and its participation in the signing of agreements, exert an influence on the scale and dynamics of its economic growth. The enactment of a new act by the National Assembly represents a substantial stride towards governmental reform and the advancement of many industries, with the aim of expediting domestic progress and aligning them with global benchmarks. The legislative embodiment under consideration is represented by the Law on Environmental Protection, Land, and Resource Management. This exemplifies the progression of the interplay between the state, enterprises, and citizens.

In the foreseeable future, irrespective of the government's dedication to environmental preservation, the Vietnamese government will be required to formulate suitable rules aimed at augmenting the economy and fostering a more liberalized trading environment. The formulation of these policies should be guided by the research findings. In order to attain a decrease in CO₂ emissions, with advancements in the economy and trade liberalization, it is imperative to construct methodologies for sustainable growth that are intricately linked to

policies aimed at safeguarding the environment. The Vietnamese economy is experiencing a notable increase in its accessibility to worldwide commerce due to the implementation of growth plans that focus on attracting FDI and employing a amalgamation of import and export methods. The economy of Vietnam has been adversely impacted by the rise in trade openness, which is indicative of the broader global trend towards increased international integration. The implementation of environmental management changes is vital to attract both domestic and international investors. Furthermore, it is imperative to facilitate the dissemination of ecologically beneficial technologies and promote the advancement of sustainable development in order to effectively address the growing levels of pollution attributable to multinational enterprises. By implementing laws that promote the manufacture and utilization of ecologically sustainable energy sources and green technologies, lawmakers have the potential to effectively mitigate carbon emissions and achieve long-term economic growth that is environmentally sustainable. In addition, it is imperative that these policies effectively promote the widespread adoption of renewable technology. One limitation of this investigation is the absence of industry-specific data, which represents a notable downside. Given this context, the forthcoming studies would endeavor to use disaggregated data or data from diverse industries on the symmetry of econometric models.

Declaration

Acknowledgment: N/A

Funding: This research received no funding.

Conflict of interest: The author declares no conflict of interest.

Authors contribution: Asif Raihan contributed to the study's conceptualization, methodology development, data collection, data curation, data analysis, writing, and visualization.

Data availability: All data generated or analyzed during this study are available here:
<https://databank.worldbank.org/source/world-development-indicators>

References

Alvarez-Herranz, A., Balsalobre-Lorente, D., Shahbaz, M., & Cantos, J. M. (2017). Energy innovation and renewable energy consumption in the correction of air pollution levels. *Energy policy*, 105, 386-397.

Begum, R. A., Raihan, A., & Said, M. N. M. (2020). Dynamic impacts of economic growth and forested area on carbon dioxide emissions in Malaysia. *Sustainability*, 12(22), 9375.

Begum, R. A., Sohag, K., Abdullah, S. M. S., & Jaafar, M. (2015). CO2 emissions, energy consumption, economic and population growth in Malaysia. *Renewable and Sustainable Energy Reviews*, 41, 594-601.

Bello, M. O., Solarin, S. A., & Yen, Y. Y. (2018). The impact of electricity consumption on CO2 emission, carbon footprint, water footprint and ecological footprint: the role of hydropower in an emerging economy. *Journal of environmental management*, 219, 218-230.

Cung, N. H. (2020). Impact of foreign direct investment on economic growth in Vietnam. *Advances in Management and Applied Economics*, 10(2), 1-6.

Esso, L. J., & Keho, Y. (2016). Energy consumption, economic growth and carbon emissions: Cointegration and causality evidence from selected African countries. *Energy*, 114, 492-497.

Frankel, J. A., & Romer, D. (2017). Does trade cause growth?. In *Global trade* (pp. 255-276). Routledge.

Grossman, G., & Krugger, J. (1995). Economic Growth and the Environment. *The Quarterly Journal of Economics*, 110(2), 353-377.

Hakimi, A., & Hamdi, H. (2016). Trade liberalization, FDI inflows, environmental quality and economic growth: a comparative analysis between Tunisia and Morocco. *Renewable and Sustainable Energy Reviews*, 58, 1445-1456.

Keho, Y. (2015). Foreign direct investment, exports and economic growth: Some African evidence. *Journal of Applied Economics & Business Research*, 5(4), 209-219.

Michieka, N. M., Fletcher, J., & Burnett, W. (2013). An empirical analysis of the role of China's exports on CO2 emissions. *Applied energy*, 104, 258-267.

Naranpanawa, A. (2011). Does trade openness promote carbon emissions? Empirical evidence from Sri Lanka. *The Empirical Economics Letters*, 10(10), 973-986.

Nguyen, A. T., Anwar, S., Alexander, W. R. J., & Lu, S. H. (2022). Openness to trade, foreign direct investment, and economic growth in Vietnam. *Applied Economics*, 54(29), 3373-3391.

Öztürk, I., & Acaravci, A. (2010). Energy consumption and CO2 emissions economic growth in Turkey. *Renewable and Sustainable Energy Reviews*, 14(9), 3220-3225.

Pesaran, M. H., Shin, Y., & Smith, R. J. (2001). Bounds testing approaches to the analysis of level relationships. *Journal of applied econometrics*, 16(3), 289-326.

Quoc, C. H., & Thi, C. D. (2018). Analysis of foreign direct investment and economic growth in Vietnam. *International Journal of Business, Economics and Law*, 15(5), 19-27.

Rahman, M. M., & Kashem, M. A. (2017). Carbon emissions, energy consumption and industrial growth in Bangladesh: Empirical evidence from ARDL cointegration and Granger causality analysis. *Energy policy*, 110, 600-608.

Raihan, A. (2023a). Exploring Environmental Kuznets Curve and Pollution Haven Hypothesis in Bangladesh: The Impact of Foreign Direct Investment. *Journal of Environmental Science and Economics*, 2(1), 25-36.

Raihan, A. (2023b). An econometric evaluation of the effects of economic growth, energy use, and agricultural value added on carbon dioxide emissions in Vietnam. *Asia-Pacific Journal of Regional Science* 7, 665-696.

Raihan, A. (2023c). Toward sustainable and green development in Chile: dynamic influences of carbon emission reduction variables. *Innovation and Green Development*, 2, 100038.

Raihan, A. (2023d). A review on the integrative approach for economic valuation of forest ecosystem services. *Journal of Environmental Science and Economics*, 2(3), 1-18.

Raihan, A. (2023e). A review of the global climate change impacts, adaptation strategies, and mitigation options in the socio-economic and environmental sectors. *Journal of Environmental Science and Economics*, 2(3), 36-58.

Raihan, A. (2023f). Sustainable development in Europe: A review of the forestry sector's social, environmental, and economic dynamics. *Global Sustainability Research*, 2(3), 72-92.

Raihan, A. (2023g). A review of tropical blue carbon ecosystems for climate change mitigation. *Journal of Environmental Science and Economics*, 2(4), 14-36.

Raihan, A. (2023h). The influence of meat consumption on greenhouse gas emissions in Argentina. *Resources, Conservation & Recycling Advances*, 19, 200183.

Raihan, A. (2023i). The contribution of economic development, renewable energy, technical advancements, and forestry to Uruguay's objective of becoming carbon neutral by 2030. *Carbon Research*, 2, 20.

Raihan, A. (2023j). Green energy and technological innovation towards a low-carbon economy in Bangladesh. *Green and Low-Carbon Economy*. <https://doi.org/10.47852/bonviewGLCE32021340>

Raihan, A. (2023k). The influences of renewable energy, globalization, technological innovations, and forests on Raihan, A. (2023l). Nexus between Greenhouse gas emissions and its determinants: the role of renewable energy and technological innovations towards green development in South Korea. *Innovation and Green Development*, 2, 100066.

Raihan, A. (2023m). An econometric assessment of the relationship between meat consumption and greenhouse gas emissions in the United States. *Environmental Processes*, 10(2), 32.

Raihan, A. (2023n). Nexus between information technology and economic growth: new insights from India. *Journal of Information Economics*, 1(2), 37-48.

Raihan, A. (2023o). Economic growth and carbon emission nexus: the function of tourism in Brazil. *Journal of Economic Statistics*, 1(2), 68-80.

Raihan, A. (2023p). Economy-energy-environment nexus: the role of information and communication technology towards green development in Malaysia. *Innovation and Green Development*, 2, 100085.

Raihan, A. (2023q). Nexus between economy, technology, and ecological footprint in China. *Journal of Economy and Technology*, 1, 94-107.

Raihan, A. (2023r). Energy, economy, and environment nexus: New evidence from China. *Energy Technologies and Environment*, 1(1), 68-80.

Raihan, A. (2023s). Nexus between economic growth, natural resources rents, trade globalization, financial development, and carbon emissions toward environmental sustainability in Uruguay. *Electronic Journal of Education, Social Economics and Technology*, 4(2), 55-65.

Raihan, A. (2023t). The dynamic nexus between economic growth, renewable energy use, urbanization, industrialization, tourism, agricultural productivity, forest area, and carbon dioxide emissions in the Philippines. *Energy Nexus*, 9, 100180.

Raihan, A. (2023u). A comprehensive review of artificial intelligence and machine learning applications in energy consumption and production. *Journal of Technology Innovations and Energy*, 2(4), 1-26.

Raihan, A. (2023v). An overview of the energy segment of Indonesia: present situation, prospects, and forthcoming advancements in renewable energy technology. *Journal of Technology Innovations and Energy*, 2(3), 37-63.

Raihan, A. (2023w). A concise review of technologies for converting forest biomass to bioenergy. *Journal of Technology Innovations and Energy*, 2(3), 10-36.

Raihan, A. (2024a). The potential of agroforestry in South Asian countries towards achieving the climate goals. *Asian Journal of Forestry* 8(1), 1-17.

Raihan, A. (2024b). The influence of tourism on the road to achieving carbon neutrality and environmental sustainability in Malaysia: the role of renewable energy. *Sustainability Analytics and Modeling*, 4, 100028.

Raihan, A., Begum, R. A., Nizam, M., Said, M., & Pereira, J. J. (2022a). Dynamic impacts of energy use, agricultural land expansion, and deforestation on CO₂ emissions in Malaysia. *Environmental and Ecological Statistics*, 29, 477-507.

Raihan, A., Begum, R. A., Said, M. N. M., & Pereira, J. J. (2022b). Relationship between economic growth, renewable energy use, technological innovation, and carbon emission toward achieving Malaysia's Paris agreement. *Environment Systems and Decisions*, 42, 586-607.

Raihan, A., & Bijoy, T. R. (2023). A review of the industrial use and global sustainability of Cannabis sativa. *Global Sustainability Research*, 2(4), 1-29.

Raihan, A., Farhana, S., Muhtasim, D. A., Hasan, M. A. U., Paul, A., & Faruk, O. (2022c). The nexus between carbon emission, energy use, and health expenditure: empirical evidence from Bangladesh. *Carbon Research*, 1(1), 30.

Raihan, A., & Himu, H. A. (2023). Global impact of COVID-19 on the sustainability of livestock production. *Global Sustainability Research*, 2(2), 1-11.

Raihan, A., Ibrahim, S., & Muhtasim, D. A. (2023b). Dynamic impacts of economic growth, energy use, tourism, and agricultural productivity on carbon dioxide emissions in Egypt. *World Development Sustainability*, 2, 100059.

Raihan, A., Muhtasim, D. A., Farhana, S., Hasan, M. A. U., Pavel, M. I., Faruk, O., Rahman, M., & Mahmood, A. (2022d). Nexus between economic growth, energy use, urbanization, agricultural productivity, and carbon dioxide emissions: New insights from Bangladesh. *Energy Nexus*, 8, 100144.

Raihan, A., Muhtasim, D. A., Farhana, S., Hasan, M. A. U., Pavel, M. I., Faruk, O., Rahman, M., & Mahmood, A. (2023c). An econometric analysis of Greenhouse gas emissions from different agricultural factors in Bangladesh. *Energy Nexus*, 9, 100179.

Raihan, A., Muhtasim, D. A., Farhana, S., Rahman, M., Hasan, M. A. U., Paul, A., & Faruk, O. (2023d). Dynamic linkages between environmental factors and carbon emissions in Thailand. *Environmental Processes*, 10, 5.

Raihan, A., Muhtasim, D. A., Farhana, S., Pavel, M. I., Faruk, O., & Mahmood, A. (2022e). Nexus between carbon emissions, economic growth, renewable energy use, urbanization, industrialization, technological innovation, and forest area towards achieving environmental sustainability in Bangladesh. *Energy and Climate Change*, 3, 100080.

Raihan, A., Muhtasim, D. A., Pavel, M. I., Faruk, O., & Rahman, M. (2022f). Dynamic impacts of economic growth, renewable energy use, urbanization, and tourism on carbon dioxide emissions in Argentina. *Environmental Processes*, 9, 38.

Raihan, A., Muhtasim, D. A., Khan, M. N. A., Pavel, M. I., & Faruk, O. (2022g). Nexus between carbon emissions, economic growth, renewable energy use, and technological innovation towards achieving environmental sustainability in Bangladesh. *Cleaner Energy Systems*, 3, 100032.

Raihan, A., Pavel, M. I., Muhtasim, D. A., Farhana, S., Faruk, O., & Paul, A. (2023e). The role of renewable energy use, technological innovation, and forest cover toward green development: Evidence from Indonesia. *Innovation and Green Development*, 2(1), 100035.

Raihan, A., Pereira, J. J., Begum, R. A., & Rasiah, R. (2023a). The economic impact of water supply disruption from the Selangor River, Malaysia. *Blue-Green Systems*, 5(2), 102-120.

Raihan, A., Rashid, M., Voumik, L. C., Akter, S., & Esquivias, M. A. (2023f). The dynamic impacts of economic growth, financial globalization, fossil fuel energy, renewable energy, and urbanization on load capacity factor in Mexico. *Sustainability*, 15(18), 13462.

Raihan, A., & Said, M. N. M. (2022). Cost–benefit analysis of climate change mitigation measures in the forestry sector of Peninsular Malaysia. *Earth Systems and Environment*, 6(2), 405-419.

Raihan, A., & Tuspeková, A. (2022a). The nexus between economic growth, renewable energy use, agricultural land expansion, and carbon emissions: New insights from Peru. *Energy Nexus*, 6, 100067.

Raihan, A., & Tuspeková, A. (2022b). The nexus between economic growth, energy use, urbanization, tourism, and carbon dioxide emissions: New insights from Singapore. *Sustainability Analytics and Modeling*, 2, 100009.

Raihan, A., & Tuspeková, A. (2022c). Dynamic impacts of economic growth, renewable energy use, urbanization, industrialization, tourism, agriculture, and forests on carbon emissions in Turkey. *Carbon Research*, 1(1), 20.

Raihan, A., & Tuspeková, A. (2022d). Nexus between energy use, industrialization, forest area, and carbon dioxide emissions: New insights from Russia. *Journal of Environmental Science and Economics*, 1(4), 1-11.

Raihan, A., & Tuspeková, A. (2022e). Dynamic impacts of economic growth, energy use, urbanization, agricultural productivity, and forested area on carbon emissions: New insights from Kazakhstan. *World Development Sustainability*, 1, 100019.

Raihan, A., & Tuspeková, A. (2022f). Dynamic impacts of economic growth, energy use, urbanization, tourism, agricultural value-added, and forested area on carbon dioxide emissions in Brazil. *Journal of Environmental Studies and Sciences*, 12(4), 794-814.

Raihan, A., & Tuspeková, A. (2022g). Nexus between economic growth, energy use, agricultural productivity, and carbon dioxide emissions: new evidence from Nepal. *Energy Nexus*, 7, 100113.

Raihan, A., & Tuspeková, A. (2022h). Towards sustainability: Dynamic nexus between carbon emission and its determining factors in Mexico. *Energy Nexus*, 8, 100148.

Raihan, A., & Tuspeková, A. (2022i). Role of economic growth, renewable energy, and technological innovation to achieve environmental sustainability in Kazakhstan. *Current Research in Environmental Sustainability*, 4, 100165.

Raihan, A., & Tuspekova, A. (2022j). Toward a sustainable environment: Nexus between economic growth, renewable energy use, forested area, and carbon emissions in Malaysia. *Resources, Conservation & Recycling Advances*, 15, 200096.

Raihan, A., & Tuspekova, A. (2022k). Nexus between emission reduction factors and anthropogenic carbon emissions in India. *Anthropocene Science*, 1(2), 295-310.

Raihan, A., & Tuspekova, A. (2023a). The role of renewable energy and technological innovations toward achieving Iceland's goal of carbon neutrality by 2040. *Journal of Technology Innovations and Energy*, 2(1), 22-37.

Raihan, A., & Tuspekova, A. (2023b). Towards net zero emissions by 2050: the role of renewable energy, technological innovations, and forests in New Zealand. *Journal of Environmental Science and Economics*, 2(1), 1-16.

Raihan, A., & Voumik, L. C. (2022a). Carbon emission dynamics in India due to financial development, renewable energy utilization, technological innovation, economic growth, and urbanization. *Journal of Environmental Science and Economics*, 1(4), 36-50.

Raihan, A., & Voumik, L. C. (2022b). Carbon emission reduction potential of renewable energy, remittance, and technological innovation: empirical evidence from China. *Journal of Technology Innovations and Energy*, 1(4), 25-36.

Raihan, A., Voumik, L. C., Mohajan, B., Rahman, M. S., Zaman, M. R. (2023i). Economy-energy-environment nexus: the potential of agricultural value-added toward achieving China's dream of carbon neutrality. *Carbon Research*, 2, 43.

Raihan, A., Voumik, L. C., Rahman, M. H., & Esquivias, M. A. (2023g). Unraveling the interplay between globalization, financial development, economic growth, greenhouse gases, human capital, and renewable energy uptake in Indonesia: multiple econometric approaches. *Environmental Science and Pollution Research*, 30, 119117-119133.

Raihan, A., Voumik, L. C., Ridwan, M., Ridzuan, A. R., Jaaffar, A. H., Yusof, N. Y. M. (2023h). From growth to green: navigating the complexities of economic development, energy sources, health spending, and carbon emissions in Malaysia. *Energy Reports*, 10, 4318-4331.

Raihan, A., Voumik, L. C., Yusma, N., & Ridzuan, A. R. (2023j). The nexus between international tourist arrivals and energy use towards sustainable tourism in Malaysia. *Frontiers in Environmental Science*, 11, 575.

Ren, S., Yuan, B., Ma, X., & Chen, X. (2014). International trade, FDI (foreign direct investment) and embodied CO₂ emissions: A case study of Chinas industrial sectors. *China economic review*, 28, 123-134.

Sarkodie, S. A., & Strezov, V. (2019). Effect of foreign direct investments, economic development and energy consumption on greenhouse gas emissions in developing countries. *Science of the Total Environment*, 646, 862-871.

Shahbaz, M., Sbia, R., Hamdi, H., & Ozturk, I. (2014). Economic growth, electricity consumption, urbanization and environmental degradation relationship in United Arab Emirates. *Ecological Indicators*, 45, 622-631.

Soytas, U., & Sari, R. (2007). The relationship between energy and production: evidence from Turkish manufacturing industry. *Energy economics*, 29(6), 1151-1165.

Sultana, T., Hossain, M. S., Voumik, L. C., & Raihan, A. (2023a). Democracy, green energy, trade, and environmental progress in South Asia: Advanced quantile regression perspective. *Heliyon*, 9(10), e20488.

Sultana, T., Hossain, M. S., Voumik, L. C., & Raihan, A. (2023b). Does globalization escalate the carbon emissions? Empirical evidence from selected next-11 countries. *Energy Reports*, 10, 86-98.

Trinh, N. H., & Nguyen, Q. A. M. (2015). The impact of foreign direct investment on economic growth: Evidence from Vietnam. *Developing country studies*, 5(20), 1-9.

Voumik, L. C., Islam, M. J., & Raihan, A. (2022). Electricity production sources and CO₂ emission in OECD countries: static and dynamic panel analysis. *Global Sustainability Research*, 1(2), 12-21.

Voumik, L. C., Mimi, M. B., & Raihan, A. (2023a). Nexus Between Urbanization, Industrialization, Natural Resources Rent, and Anthropogenic Carbon Emissions in South Asia: CS-ARDL Approach. *Anthropocene Science*, 2, 48-61.

Voumik, L. C., Rahman, M. H., Rahman, M. M., Ridwan, M., Akter, S., & Raihan, A. (2023b). Toward a sustainable future: Examining the interconnectedness among Foreign Direct Investment (FDI), urbanization, trade openness, economic growth, and energy usage in Australia. *Regional Sustainability*, 4, 405-415.

Voumik, L. C., Ridwan, M., Rahman, M. H., & Raihan, A. (2023c). An Investigation into the Primary Causes of Carbon Dioxide Releases in Kenya: Does Renewable Energy Matter to Reduce Carbon Emission?. *Renewable Energy Focus*, 47, 100491.

REVIEW ARTICLE

Climate change and its impacts in rural areas of Pakistan: a Literature review

Abdul Rasool Khoso¹, Gu Jintu¹, Shahnaz Bhutto^{1*}, Muhammad Javed Sheikh², Kainat Vighio² Arshad Ali Narejo²

¹Department of Sociology, School of Public Administration, Hohai University Nanjing Jiangsu P.R China

²Department of Rural Sociology, Faculty of Agricultural Social sciences, Sindh Agriculture University Tandojam Sindh Pakistan

Corresponding author: Shahnaz Bhutto: shahnaz.socio.95@gmail.com

Received: 15 December, 2023, Accepted: 18 January, 2024, Published: 21 January, 2024

Abstract

Pakistan, which is located in Southeast Asia, is one of the nations that is most susceptible to the effects of climate change, as seen by the increased frequency of floods and droughts. Variations in climate have a negative impact on a number of areas, such as the agricultural industry, groundwater levels, dietary resources, soil quality and organic matter content, public health, and poverty rates. This study's main goal is to evaluate the impact of climate change and the adaptations farms have made in response to variations in precipitation and temperature. Pakistani farmers have responded to climate change by implementing a variety of adaptive techniques. These tactics include changing the way that fertilizer is used, changing crop varieties, using pesticides, improving seed quality, diversifying the farm, planting shade trees, changing irrigation techniques, engaging in off-farm activities, and migrating both permanently and temporarily. As an additional adaptive step, some farmers have turned to asset sales. Additionally, research indicates that agricultural households in wetland areas experience less volatility in climate than those in arid regions.

Keywords: Climate Change; Impacts; Rural Areas; Pakistan

Introduction

Global warming has far-reaching consequences that can harm natural ecosystems and eventually have an influence on highland economies (Wang, 2024; Chow et al., 2024). Climate is a major factor in agricultural output; temperature and precipitation are two major factors that influence farm productivity (Ozdemir, 2022). The agriculture industry is by its very nature complicated, full of dangers, and unpredictable. Farmers must contend with the unpredictable nature of returns on their investments in agriculture as well as the possibility of declining agricultural output as a result of climate change (Syed, et al. 2022). The most vulnerable people to climate changes in emerging countries are small subsistence farmers and rural residents. They encounter difficulties as a result of restricted access to productive alternatives and weak adaptation abilities (Sohail, et al, 2022). Climate change consequences are very geographically varied, with large differences within and across places, particularly in non-industrialized and humid countries (Singh et al., 2024; Ma et al., 2023). These differences in climatic circumstances are predicted by researchers like, Abbass, et al. (2022); Kaiser, et al. 2022) to result in a higher frequency of unpredictable climate events and calamities such storms, cyclones, floods, and droughts.

These difficulties may be related to the global geographic distribution of vulnerable areas, resource scarcity, increased climate exposure, and the rapid population rise (Isfat and Raihan, 2022). Pakistan is one of the areas that is most susceptible to the effects of climatic catastrophes. Temperature changes, variations in rainfall, and a propensity for hazardous situations are only a few examples of these events (IPCC, 2014; Fahad, et al. 2022). Floods and droughts are the main natural disasters that put people at risk for economic and social problems, and they frequently result in fatalities. Because they have fewer resources and adaptive capacity, rural communities in underdeveloped nations are more vulnerable to floods (Fahad and Wang, 2020). Ecological and climatic changes have a significant impact on these nations' flood severity and intensity. Pakistan's agricultural sector has had significant challenges while making a significant economic contribution to the nation, mostly as a result of devastating floods (Ahmed et al., 2023; Rasool et al., 2021). Consequently, it is critical to modify the agricultural sector to address the effects of flooding in order to protect farming communities' means of subsistence. In terms of exposure to the effects of climatic variability, Pakistan was placed 12th in 2012, 8th in 2015, and 7th overall (Kreft and Eckstein, 2013). Pakistan has seen several extreme weather events in the past few years, such as storms, cyclones, droughts, and floods (Hussain, et al., 2020; Tingju et al., 2014). These natural disasters are occurring more often and resulting in larger losses (Ullah & Takaaki, 2016). Numerous rural residents in Pakistan have been severely affected by natural catastrophes, such as the floods that occurred between 2010 and 2014 (Fahad and Wang, 2020). Several studies have demonstrated how highly susceptible Pakistani farming communities are to fluctuations in the country's climate (Wade, & Jennings, 2016; Elahi, et al., 2022). Scholars across have repeatedly recognized how these communities are affected by differences in the climate (Wheeler, & von Braun, 2013; Khan et al., 2023). The recurring occurrence of climate risks is a persistent concern for Pakistan; in spite of advancements in guidelines, regulations, affordable instruments, and feasible interventions, the nation still lacks proper implementation (Hussain, et al., 2023). Therefore, this research examines how Pakistani agricultural households have responded to changes in climate, adaptability, and variability.

Pakistan's rural regions are becoming more and more susceptible to the negative impacts of climate change, such as increased temperatures, altered precipitation patterns, and extreme weather events. Significant obstacles to Pakistani rural populations' livelihoods, agriculture, and general well-being are presented by these environmental changes (Mahmood & Hassan, 2022). Comprehensive study is yet desperately needed to determine the precise nature and scope of these effects, as well as to design and put into practice efficient plans for these regions' adaptation and mitigation to climate change. The purpose of this research is to examine the many effects of climate change in Pakistan's rural areas and evaluate current and future approaches to mitigating these issues. The study on the effects of climate change in Pakistan's rural regions innovates by addressing a perspective that is usually ignored and concentrating specifically on the unique difficulties that rural populations experience. In order to fully comprehend the complex consequences of climate change on rural communities, the research integrates ideas from environmental science, sociology, and economics through an interdisciplinary approach. The study promotes participatory approaches and community participation to include local viewpoints, hence promoting a more comprehensive and context-specific analysis. The research also seeks to offer practical suggestions and policy implications, focusing on solutions specific to the vulnerabilities noted in the literature review. This will help to create a more comprehensive and successful response to climate change in Pakistan's rural areas.

The paper will commence with an introduction offering a comprehensive overview of climate change in rural Pakistan, followed by a literature review that systematically analyzes the multifaceted impacts of climate change on agriculture (water, livelihood and community), poverty and health in these rural areas.

Methodology

A comprehensive literature search was conducted across various electronic databases, including Academic Search Complete, CAB abstracts, GEOBASE, Google Scholar, Sci ELO, Scopus, and Science Direct (de Araujo et al., 2021). Specific search terms such as "Climate Change," "Impacts," "Rural Areas," "Pakistan," and "Asia" were employed to identify pertinent peer-reviewed articles. In addition to academic databases, supplementary sources from the internet and organizational databases like the World Health Organization, UNFCCC, and the International Development Research Centre were also consulted. This dual-pronged approach aimed to encompass a diverse range of literature, including grey literature, reports, books, and other relevant publications pertaining to the impacts of climate change in rural areas of Pakistan. The criteria for inclusion were based on a direct and clear reference to the topic of climate change and its ramifications in rural regions. Harari et al., (2020) articulated that, the comprehensive search strategy across both academic and non-academic sources ensures a thorough and inclusive overview of the existing literature on the subject.

Results and Discussion

The combined search of publicly available reports and peer reviewed articles generated a total of 61 reports, of which 49 were found to be relevant to this review. The selected documents are predominantly case studies that have discussed agricultural practices and the effects of these on climate change. Most also documented the negative effects of climate change, temperature variations at the local level, often linking those effects with agricultural back off problems. Which were causing the damage to agricultural crops as well as local lives at greater extent.

Effects of climate change on agriculture

A vital industry in every country, agriculture constantly suffers from the negative effects of climate change. In recent decades, these effects of climatic variability have become more subtle (Patt et al., 2009). Climate change has profound implications for agriculture, affecting various facets of crop production, livestock management, and overall food security (Mutengwa et al., 2023). Predictions on climatic variability point to a dynamic climate characterized by increased susceptibilities, particularly in areas with lower incomes (Roy, et al., 2023; Celis, et al., 2023). The capacity to adjust to these threats substantially influences the magnitude of these climatic events' consequences (Ahmed, et al., 2021). The influence of non-climatic factors on adaptation decisions is a critical component of the adaptation process at the farm level. Decision-makers in agriculture, farm households traverse a multifaceted terrain made up of institutional, political, biophysical, and economic factors (Debelle, 2019). Furthermore, climate change can influence the proliferation of pests and diseases, introducing new threats to agricultural productivity. Crucial to mitigating these adverse effects is the implementation of adaptation strategies, including the development of climate-resilient crops, enhanced water management, and the adoption of sustainable farming practices, all of which are essential for ensuring global food security (Balasundram et al., 2023). Regarding the effects of climate change, Pakistan stands out as one of the developing nations most at risk (Parveen & Sharma, 2019). The frequency and intensity of climate disasters, such as floods, droughts, high temperatures, water scarcity, and an increase in pests and illnesses in some areas, have already increased throughout the country (Aslam, et al., 2020). Pakistan moved up to the 16th most susceptible position in 2010–2011, from its 2009–2010 ranking of 29th among the most vulnerable areas, according to the Global Climate Change Vulnerability Index (CCVI) study (Khan and Fee, 2014). Prominent meteorological incidents in Pakistan, such the floods that occurred in 2010, and 2014 and 2022, together with a protracted drought that lasted from 1999 to 2003, provide dramatic illustrations of the growing frequency of meteorological issues.

Due to high rates of poverty and a lack of material and financial resources, Pakistan struggles to adapt (Abid et al., 2015; Naureen, et al., 2022). Farmers' decisions on how to adjust to climatic variability and related hazards are influenced by these diverse experiences, either directly or indirectly (Abid et al., 2015; Adger et al., 2005; Ahmed, et al., 2019)."

The responses of farmers and their capacity for adaptation are further explained by a number of additional elements, such as agricultural methods, personal traits, and particular situations (Bryan et al., 2009). Extreme climate variability has a significant impact on social, economic, and natural ecosystems and adds to upcoming problems (Seddon et al., 2020). Climate variability increases the severity and frequency of natural events; indirect effects of climate variability include changes to the properties of land and water, variations in the rates of insect infestation, adjustments to the amount of moisture in the soil, and changes to the distribution of diseases. In less developed, agriculturally based economies, increased temperatures, erratic precipitation patterns, and lower crop yields directly affect food security. According to Godde et al. (2021), areas where agriculture is the main source of income are therefore especially susceptible to the negative consequences of climatic variability.

According to Thornton et al., (2014), climatic variability has a substantial effect on the agricultural industry by changing or reducing productive dimensions and by increasing risks associated with production, both direct and indirect. Wide-ranging effects of climate variability are seen in the environment and many socioeconomic areas, including as agriculture, food security, water resources, terrestrial ecosystems, biodiversity, and human health. Changes in the patterns of precipitation are probably going to make floods and water scarcity worse. Increased temperatures alter agricultural growing seasons, which affects food security and the spread of illnesses, raising the danger of diseases like malaria. According to UNFCCC (2008), rising temperatures also accelerate the rate of habitat damage and species extinction. Ahmed et al., (2023) further elaborated that, elevated temperatures can impact crop growth and development, leading to shifts in yield patterns and the geographical distribution of crops. Altered precipitation patterns may result in both water scarcity and excess, affecting crop irrigation and livestock water supply.

Climate Change and its impacts on poverty and health

Temperature variations can have a big effect on people's health. In 2000, it was discovered that variations in climate were accountable for around 2.4% of diarrhea cases worldwide and 6% of malaria instances in different low-income areas (WHO, 2002). Pakistan stands out among developing nations, especially those in Southeast Asia, backward in health (Khoso et al., 2022), for being very vulnerable to climate-related disasters including floods and droughts. Devastating floods occurred in Pakistan between 2010 and 2014, causing significant loss of life and property along with widespread population relocation. In Pakistan, insect infestations, seasonal and flash floods, and droughts are only a few other climate-related phenomena. Casson et al., (2023) stated that Climate change introduces various health risks. Increased temperatures can lead to heat-related illnesses, while altered precipitation patterns may result in waterborne diseases and the spread of vector-borne diseases like malaria and dengue. Extreme weather events can disrupt healthcare infrastructure, limiting access to medical services and exacerbating health disparities.

Strategies for adapting to climate change in Pakistan

The agricultural industry demonstrates a capacity to quickly adopt new technologies, modifications to resource management practices, and adaptable tactics (Rehman et al., 2022). Researchers Fahad and Wang (2020) used household surveys to study adaptation strategies in rural Khyber Pakhtunkhwa province, Pakistan. The study found that the region's main adaptation strategies included changing crop types and varieties, managing pesticides,

improving seed quality, planting shade trees, diversifying farming activities, and storing water. It is a common occurrence for people to adapt to the effects of climatic fluctuation in general and on the farming industry in particular. Effective adaptation to climatic variability requires modifications and adaptations at all scales, from the local community to the national and international levels (Kalogiannidis et al. 2022).

In order to handle current and future climatic challenges, it is crucial to build community resilience through the adoption of appropriate technologies, the preservation of traditional knowledge, and the diversification of livelihoods. The need of appropriate crop replacement was also stressed by Mendelsohn et al. (2007) in their analysis of how climatic variability affects agriculture. The IPCC Third Assessment Report states that although adaption strategies are not foolproof and have a cost associated with them, they can lessen the negative consequences of climate variability and increase positive outcomes. Additionally, it is contended that strategic adaptation can support autonomous adaptation and that both human and natural systems will adapt to some degree spontaneously. So far, the implementing afforestation programs to enhance carbon sequestration and promote biodiversity. Restore degraded ecosystems to improve resilience against climate impacts and sustain ecosystem services (Sargani et al., 2023).

However, the potential for adaptation for human systems is greater than that for the preservation of natural systems (Solomon , 2007). It is essential to combine community and governmental actions with traditional knowledge and local coping strategies. Governmental and non-governmental organizations (NGOs) should include climate variability into their policies at all levels of decision-making in order to promote successful adaptation measures. Farmers use a variety of tactics, such as changing planting and harvesting times and applying a range of agronomic techniques, to deal with climatic unpredictability and optimize earnings (Agesa et al., 2019). Robert et al. (2016) conducted a research that employed household survey methodologies to identify major adaptation measures in the study region. These tactics included planting trees, changing planting dates, conserving soil, and utilizing various crop kinds. Nevertheless, even though there were discernible variations in temperature and precipitation, a sizable proportion of farm households did not make any changes to their farming methods. Crop diversity is an adaptation technique that focuses on reducing the risk of total crop failure instead than only increasing the production of a particular crop (Huong et al., 2017). Crop diversification is a commonly used adaptation method in Pakistan to mitigate the effects of climate events (Fahad and Wang, 2018). According to earlier research (Kristiansen, 2022), using a variety of crop kinds in the same season may help farm households save money and have more access to resources. Farmers can be less vulnerable to climate change, particularly if they have income sources other than farming (Johnston & Cooper, 2022).

Off-farm pursuits might involve labor or ancillary enterprises like Pakistani stores. Pakistani farmers have frequently used a variety of soil and water conservation techniques in an attempt to mitigate soil erosion and degradation, with the goal of restoring their fields as a result (Fahad and Wang, 2020; Fahad and Wang, 2018). Pakistani farmers acknowledge that one way they cope with climate dangers is by selling assets. One of the most important adaptation measures used in Pakistan is irrigation, which is also widely used.

A significant fraction of farmers in Pakistan live in distant locations, own tiny landholdings, and have no formal education. The best way to determine how farm households perceive climate change is through household surveys. Research by Abid et al. (2015) and Fahad and Wang (2018) has demonstrated a substantial relationship between the perception of climate change and the household head's age and agricultural experience. For example, compared to less educated and less experienced farmers, educated and experienced farmers are more likely to recognize climate change. It is also thought that knowledge of climatic fluctuations is favorably correlated with the education degree of the family head. Access to extension services and information on climate problems for farmers increases knowledge and creates a favorable environment for the adoption of new cropping patterns.

Conclusion

In conclusion, the literature analysis on the effects of climate change in Pakistan's rural regions highlights the necessity of using an interdisciplinary approach to address the unique problems that these people confront. The report calls for community participation to include local viewpoints into solutions by highlighting the complex relationships between environmental, social, and economic elements that contribute to vulnerabilities in rural areas. It suggests a holistic approach that encompasses community-based adaption strategies, policy lobbying, and the promotion of sustainable behaviors, and it asks for context-specific suggestions and policy implications. In order to improve resilience and promote sustainable development in the face of climate change in rural Pakistan, this review offers insightful information for next studies and useful solutions. By emphasizing the importance of considering local nuances and collaborating with communities, it paves the way for more effective and culturally sensitive interventions in the ongoing battle against the impacts of climate change.

Declaration: We (all authors) declare that the paper is our original work and is not published anywhere.

Acknowledgement: I would like to express my sincere gratitude to all my Co-Authors for their invaluable guidance, unwavering support, and insightful feedback throughout the entire research process. Their expertise and encouragement played a pivotal role in shaping the direction of this study. Additionally, I extend my appreciation to all the authors for their constructive discussions and collaborative efforts that enriched the quality of this work. Lastly, I want to acknowledge the participants of this study, whose willingness to share their experiences was instrumental in the successful completion of this research."

Fundings: There is no funding for this study

Conflicts of Interests: Authors declare no conflict of interests

Authors contribution: All authors contributed equally, including review literature, data write-up, data collection from various sources as well as final checkups.

Data Availability: All the secondary/ literature based data is available in the paper.

References

Abbass, K., Qasim, M. Z., Song, H., Murshed, M., Mahmood, H., & Younis, I. (2022). A review of the global climate change impacts, adaptation, and sustainable mitigation measures. *Environmental Science and Pollution Research*, 29(28), 42539-42559.

Abid M, Scheffran J, Schneider UA, Ashfaq M (2015) Farmers' perceptions of and adaptation strategies to climate change and their determinants: the case of Punjab province, Pakistan. *Earth Syst Dyn* 6:225–243.

Adger WN, Arnell NW, Tompkins EL (2005) Successful adaptation to climate change across scales. *Glob Environ Chang* 15:77–86.

Agesa, B. L., Onyango, C. M., Kathumo, V. M., Onwonga, R. N., & Karuku, G. N. (2019). Climate change effects on crop production in Yatta sub-county: farmer perceptions and adaptation strategies. *African Journal of Food, Agriculture, Nutrition and Development*, 19(1), 14010-14042.

Ahmad, S., Jia, H., Ashraf, A., Yin, D., Chen, Z., Xu, C., ... & Ahmed, R. (2023). Water resources and their management in Pakistan: A critical analysis on challenges and implications. *Water-Energy Nexus*.

Ahmed, M., Asim, M., Ahmad, S., & Aslam, M. (2023). Climate Change, Agricultural Productivity, and Food Security. In *Global Agricultural Production: Resilience to Climate Change* (pp. 31-72). Cham: Springer International Publishing.

Ahmed, Z., Guha, G. S., Shew, A. M., & Alam, G. M. (2021). Climate change risk perceptions and agricultural adaptation strategies in vulnerable riverine char islands of Bangladesh. *Land use policy*, 103, 105295.

Ahmed, K., Shahid, S., Chung, E. S., Wang, X. J., & Harun, S. B. (2019). Climate change uncertainties in seasonal drought severity-area-frequency curves: Case of arid region of Pakistan. *Journal of Hydrology*, 570, 473-485.

Aslam, H. M. U., Butt, A. A., Shabir, H., Javed, M., Hussain, S., Nadeem, S. & Arshad, S. (2020). Climatic Events and Natural Disasters of 21st Century: A Perspective of Pakistan. *International Journal of Economic and Environmental Geology*, 11(2), 46-54.

Balasundram, S. K., Shamshiri, R. R., Sridhara, S., & Rizan, N. (2023). The Role of Digital Agriculture in Mitigating Climate Change and Ensuring Food Security: An Overview. *Sustainability*, 15(6), 5325.

Bryan E, Deressa TT, Gbetibouo GA, Ringler C (2009) Adaptation to climate change in Ethiopia and South Africa: options and constraints. *Environ Sci Pol* 12:413–426.

Casson, N., Cameron, L., Mauro, I., Friesen-Hughes, K., & Rocque, R. (2023). Perceptions of the health impacts of climate change among Canadians. *BMC Public Health*, 23(1), 1-13.

Celis, N., Casallas, A., Lopez-Barrera, E. A., Felician, M., De Marchi, M., & Pappalardo, S. E. (2023). Climate Change, Forest Fires, and Territorial Dynamics in the Amazon Rainforest: An Integrated Analysis for Mitigation Strategies. *ISPRS International Journal of Geo-Information*, 12(10), 436.

Chow, T. N., Tam, C. Y., Chen, J., & Hu, C. (2024). Effects of Background Synoptic Environment in Controlling South China Sea Tropical Cyclone Intensity and Size Changes in Pseudo-Global Warming Experiments. *Journal of Climate*.

de Araujo, P. C., Gutierrez, R. C., & Hjørland, B. (2021). Citation indexing and indexes. KO KNOWLEDGE ORGANIZATION, 48(1), 72-101.

Debelle, G. (2019, March). Climate change and the economy. In *Speech at public forum hosted by Centre for Policy Development, Sydney, Australia, March* (Vol. 12).

Elahi, E., Khalid, Z., Tauni, M. Z., Zhang, H., & Lirong, X. (2022). Extreme weather events risk to crop-production and the adaptation of innovative management strategies to mitigate the risk: A retrospective survey of rural Punjab, Pakistan. *Technovation*, 117, 102255.

Fahad, S., Adnan, M., Saud, S., & Nie, L. (Eds.). (2022). *Climate change and ecosystems: challenges to sustainable development*. CRC Press.

Fahad, S., & Wang, J. (2020). Climate change, vulnerability, and its impacts in rural Pakistan: a review. *Environmental Science and Pollution Research*, 27, 1334-1338.

Fahad, S., & Wang, J. (2018). Farmers' risk perception, vulnerability, and adaptation to climate change in rural Pakistan. *Land use policy*, 79, 301-309.

Godde, C. M., Mason-D'Croz, D., Mayberry, D. E., Thornton, P. K., & Herrero, M. (2021). Impacts of climate change on the livestock food supply chain; a review of the evidence. *Global food security*, 28, 100488.

Harari, M. B., Parola, H. R., Hartwell, C. J., & Riegelman, A. (2020). Literature searches in systematic reviews and meta-analyses: A review, evaluation, and recommendations. *Journal of Vocational Behavior*, 118, 103377.

Huong T,L,N., Shun Bo, Y., & Fahad, S. (2017). Farmers' perception, awareness and adaptation to climate change: evidence from northwest Vietnam. *International Journal of Climate Change Strategies and Management*, 9(4), 555-576.

Hussain, M., Butt, A. R., Uzma, F., Ahmed, R., Irshad, S., Rehman, A., & Yousaf, B. (2020). A comprehensive review of climate change impacts, adaptation, and mitigation on environmental and natural calamities in Pakistan. *Environmental monitoring and assessment*, 192, 1-20.

Hussain, M. A., Shuai, Z., Moawwez, M. A., Umar, T., Iqbal, M. R., Kamran, M., & Muneer, M. (2023). A Review of Spatial Variations of Multiple Natural Hazards and Risk Management Strategies in Pakistan. *Water*, 15(3), 407.

IPCC (2014) Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Intergovernmental Panel on Climate Change

Isfat, M., & Raihan, A. (2022). Current practices, challenges, and future directions of climate change adaptation in Bangladesh. *Journal homepage: www.ijrpr.com ISSN*, 2582, 7421.

Johnston, W., & Cooper, A. (2022). Small islands and climate change: analysis of adaptation policy in the Cayman Islands. *Regional Environmental Change*, 22(2), 45.

Kaiser, H. M., Riha, S. J., Wilks, D. S., & Sampath, R. (2022). Adaptation to global climate change at the farm level. In *Agricultural dimensions of global climate change* (pp. 136-152). Routledge.

Kalogiannidis, S., Kalfas, D., Chatzitheodoridis, F., & Papaevangelou, O. (2022). Role of crop-protection technologies in sustainable agricultural productivity and management. *Land*, 11(10), 1680.

Khan JA, Fee L (2014) Cities and climate change initiative-abridged report: Islamabad Pakistan, climate change vulnerability assessment. United Nations Human Settlements Programme (UN-Habitat).

Khan, S., Gaira, K. S., Asgher, M., Verma, S., Pant, S., Agrawala, D. K., ... & Kesawat, M. S. (2023). Temperature Induced Flowering Phenology of Olea ferruginea Royle: A Climate Change Effect. *Sustainability*, 15(8), 6936.

Khoso, A. R., Akhtar, F., Narejo, A. A., Mallah, S. A., Vighio, K., & Sanjrani, D. K. (2022). COMPARATIVE ANALYSIS OF SERVICE QUALITY BETWEEN PUBLIC AND PRIVATE HOSPITALS, USING SERVQUAL MODEL: A CASE STUDY OF PESHAWAR, PAKISTAN. *MEDFARM: Jurnal Farmasi dan Kesehatan*, 11(2), 240-252.

Kreft S, Eckstein D (2013) Global Climate Risk Index 2014: who suffers most from extreme weather events? Weather-Related Loss Events in 2012 and 1993 to 2012. Germanwatch eV, Bonn.

Kristiansen, K. (2022). Archaeology and the genetic revolution in European prehistory. *Elements in the Archaeology of Europe*.

Ma, L., Zhu, Z., Li, S., & Li, J. (2023). Analysis of spatial and temporal changes in human interference in important ecological function areas in China: the Gansu section of Qilian Mountain National Park as an example. *Environmental Monitoring and Assessment*, 195(9), 1029.

Mahmood, S., & Hassan, Q. (2022). CLIMATE CHANGE: ITS IMPACTS ON PAKISTAN. *International Research Journal of Social Sciences and Humanities*, 1(2), 20-32.

Mendelsohn, R. (2007). Measuring climate impacts with cross-sectional analysis. *Climatic Change*, 81(1), 1.

Mutengwa, C. S., Mnkeni, P., & Kondwakwenda, A. (2023). Climate-Smart Agriculture and Food Security in Southern Africa: A Review of the Vulnerability of Smallholder Agriculture and Food Security to Climate Change. *Sustainability*, 15(4), 2882.

Noureen, A., Aziz, R., Ismail, A., & Trzcinski, A. P. (2022). The impact of climate change on waterborne diseases in Pakistan. *Sustainability and Climate Change*, 15(2), 138-152.

Ozdemir, D. (2022). The impact of climate change on agricultural productivity in Asian countries: a heterogeneous panel data approach. *Environmental Science and Pollution Research*, 1-13.

Patt A, Peterson N, Carter M, Velez M, Hess U, Suarez P (2009) Making index insurance attractive to farmers. *Mitig Adapt Strateg Glob Chang* 8:737-753.

Praveen, B., & Sharma, P. (2019). A review of literature on climate change and its impacts on agriculture productivity. *Journal of Public Affairs*, 19(4), e1960.

Rasool, A , Ali A, Ahmad I, Anwar M. (2021). TO STUDY THE AWARENESS AND ADOPTION OF PRODUCTION PRACTICES OF RICE GROWERS IN TALUKA SHAHDADKOT, SINDH, PAKISTAN Volume 10, Issue 04, Pages: 583-589.

Rehman, A., Saba, T., Kashif, M., Fati, S. M., Bahaj, S. A., & Chaudhry, H. (2022). A revisit of internet of things technologies for monitoring and control strategies in smart agriculture. *Agronomy*, 12(1), 127.

Robert, M., Thomas, A., & Bergez, J. E. (2016). Processes of adaptation in farm decision-making models. A review. *Agronomy for sustainable development*, 36, 1-15.

Roy, T., Kalambukattu, J. G., Biswas, S. S., & Kumar, S. (2023). Agro-climatic Variability in Climate Change Scenario: Adaptive Approach and Sustainability. In *Ecological Footprints of Climate Change: Adaptive Approaches and Sustainability* (pp. 313-348). Cham: Springer International Publishing.

Sargani, G. R., Jiang, Y., Chandio, A. A., Shen, Y., Ding, Z., & Ali, A. (2023). Impacts of livelihood assets on adaptation strategies in response to climate change: Evidence from Pakistan. *Environment, Development and Sustainability*, 25(7), 6117-6140.

Seddon, N., Chausson, A., Berry, P., Girardin, C. A., Smith, A., & Turner, B. (2020). Understanding the value and limits of nature-based solutions to climate change and other global challenges. *Philosophical Transactions of the Royal Society B*, 375(1794), 20190120.

Singh, S. V., Jha, R., Singh, A. K., Ranjan, R., & Pandey, S. (2024). Sustainable Tourism Perspective in the Sustainable Development Goals: A Case Study of Heritage Sites in Uttarakhand. In *Implementing Sustainable Development Goals in the Service Sector* (pp. 91-107). IGI Global.

Sohail, M. T., Mustafa, S., Ali, M. M., & Riaz, S. (2022). Agricultural communities' risk assessment and the effects of climate change: a pathway toward green productivity and sustainable development. *Frontiers in Environmental Science*, 10.

Solomon, S. (2007, December). IPCC (2007): Climate change the physical science basis. In *Agu fall meeting abstracts* (Vol. 2007, pp. U43D-01).

Syed, A., Raza, T., Bhatti, T. T., & Eash, N. S. (2022). Climate Impacts on the agricultural sector of Pakistan: Risks and solutions. *Environmental Challenges*, 6, 100433.

Thornton, P. K., Erickson, P. J., Herrero, M., & Challinor, A. J. (2014). Climate variability and vulnerability to climate change: a review. *Global change biology*, 20(11), 3313-3328.

Tingju Z, Xie H, Waqas A, Ringler C, Iqbal MM, Goheer MA, Sulser T (2014) Climate change and extreme events, impacts on Pakistan's agriculture. International Food Policy Research Institute (IFPRI) (PSSP Policy Note 002).

Ullah, W., & Takaaki, N. (2016). Climate change vulnerability of Pakistan towards natural disasters: a review. *International Journal of Environmental Protection and Policy*, 4(5), 126.

UNFCCC. (2008). United Nations Framework Convention on Climate Change. November-26-2008. Climate Change. Poznan Climate Change Conference.

Wang, S. (2024). Opportunities and threats of cryosphere change to the achievement of UN 2030 SDGs. *Humanities and Social Sciences Communications*, 11(1), 1-13.

Wade, K., & Jennings, M. (2016). The impact of climate change on the global economy. *Schroders Talking Point*.

Wheeler, T. and von Braun, J. (2013) 'Climate change impacts on global food security', *Science*. American Association for the Advancement of Science, pp. 508–513. doi: <https://doi.org/10.1126/science.1239402>.

WHO (2002) World Health Report 2002. Reducing Risk and Promoting Healthy Living. World Health Organization, Geneva.

RESEARCH ARTICLE

Correlation or Causation: Unraveling the Relationship between PM2.5 Air Pollution and COVID-19 Spread Across the United States

Mohammad Maniat^{1*}, Hossein Habibi¹, Elham Manshoorinia¹, Parisa Raufi², Payam Marous¹, Masoud Omraninaini¹

¹Department Civil Engineering, Islamic Azad University, Science and Research Branch, Tehran, Iran

²Department of Civil Engineering, Faculty of Technical and Engineering, Islamic Azad University, Tehran North Branch, Tehran, Iran

Corresponding Author: Mohammad Maniat: mohammad.maniat@srbiau.ac.ir

Received: 13 January, 2024, Accepted: 13 February, 2024, Published: 17 February, 2024

Abstract

Numerous studies have examined the potential connection between air pollution, particularly PM2.5, and the incidence of COVID-19 cases during the pandemic. While several studies have demonstrated a strong correlation, caution is advised as correlation does not imply causation. To address this concern, our two-year observational study employs a comprehensive approach that utilizes a large sample size and draws on temporal and spatial data across the United States, surpassing the limitations of previous studies restricted to specific locations. Through rigorous correlation and regression analyses, we control for potential confounding factors. Air pollution data, a crucial component of our study, has been sourced from the United States Environmental Protection Agency (EPA). Additionally, COVID-19 case data is extracted from the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University, providing a robust and widely recognized dataset for our analyses. Notably, a significant spatial correlation exists between COVID-19 cases and population size ($r=0.98$, p -value <0.01), as confirmed by multivariate regression analysis, suggesting a confounding influence of population. It is crucial to emphasize that correlation does not automatically imply a direct cause-and-effect relationship. Moreover, to minimize the impact of population, we employ rates (COVID-19 cases/population of States), demonstrating that the rate of COVID-19 cases is independent of PM2.5 and population. Additionally, the rate of COVID-19 infection is not correlated with population density, implying the population's influence on infection is more likely due to probability rather than being a direct cause. In summary, while many studies report a correlation between air pollution and COVID-19 cases, the influence of confounding factors like population density necessitates further investigation to establish a definitive causal relationship. In conclusion, while many studies report a correlation between air pollution and COVID-19 cases, the influence of confounding factors like population density necessitates further investigation to establish a definitive causal relationship.

Keywords: COVID-19; population; air pollution; PM2.5; confounding

Introduction

A study conducted by Doremalen et al. (Van Doremalen et al., 2020) has demonstrated that SARS-CoV-2 can remain viable and infectious in aerosols for several hours and on certain surfaces. Building upon this research, the hypothesis arises for other researchers that COVID-19, caused by the coronavirus, might potentially interact with air pollution. Groulx et al. (Groulx, Urch, Duchaine, Mubareka, & Scott, 2018) confirm that microbial agents of communicable diseases, such as viruses, have interactions with air pollution, affecting public health. A study conducted in Poland found a significant association between particulate matter and the number of new COVID-19 infections (Czwojdzińska, Terpińska, Kuźniarski, Płaczkowska, & Piwowar, 2021a). Similar studies across Europe suggest that short-term exposure to particulate matter (PM) is related to the spread of SARS-CoV-2, with PM levels in England and Italy specifically implicated (Renard et al., 2022; Zoran, Savastru, Savastru, & Tautan, 2020). In the Middle East, a study of Baghdad and Kuwait found that PM2.5 levels were positively related to deaths caused by COVID-19, with a decrease in particulate matter leading to a significant decrease in the death rate. In Kuwait, a 38.4% decrease in deaths was observed during the travel ban period, with an average decrease of 22.3% in PM2.5 levels. This study also found a positive relationship between air temperature and a negative relationship between humidity and the number of deaths (Halos, Al-Dousari, Anwer, & Anwer, 2021). Therefore, some studies have found a relationship between PM and COVID-19 (Czwojdzińska, Terpińska, Kuźniarski, Płaczkowska, & Piwowar, 2021b; Renard, Surcin, Annesi-Maesano, & Poincelet, 2023b; Setti et al., 2020), while others have not found any significant association between the two (Bontempi, 2020). Some studies have merely identified a correlation between PM and the daily number of confirmed cases without providing a p-value (Zoran et al., 2020). In a study conducted in Delhi, researchers found that the number of COVID-19 cases exhibited a significant negative correlation with PM2.5 levels (correlation = -0.63, p-value < 0.01) during the pre-lockdown phase. However, the number of COVID-19 cases during the lockdown phase also showed a positive correlation with PM2.5, with a correlation value of 0.56. Despite these contrasting correlations, the researchers concluded that there is a dependence of COVID-19 transmission on the concentration of PM2.5 in Delhi's environment (Chaudhary et al., 2022).

The study aims to investigate the reason behind the varied correlations in existing research, exploring the potential role of confounding factors, notably population, in influencing whether some studies observe a positive correlation while others find a negative association. The study unfolds systematically, commencing with a thorough introduction to the global impact of COVID-19 and its potential connection to air pollution. A comprehensive literature review examines existing research, paving the way for a detailed methodology encompassing study design, data sources, and statistical analyses. The data sources section clarifies the origins and reliability of air pollution and COVID-19 data. The ensuing analysis meticulously presents statistical findings while addressing potential biases. A nuanced discussion interprets results, exploring implications and limitations, and the conclusion succinctly summarizes key findings while proposing avenues for future research.

Literature review

The COVID-19 pandemic will have long-term effects on the worldwide economy (Al-kasasbeh, 2022). Meanwhile, various studies have explored factors influencing COVID-19 transmission, including air pollution (Maniat et al., 2023) and preventative measures like handwashing (Otto, Opatoki, & Luyi, 2022). An observational study in USA California, using data from the Environmental Pollution Agency (EPA), reported negative correlations between PM2.5 levels and both COVID-19 cases (-0.45) and mortality (-0.42) (Bashir, Jiang, et al., 2020). Researchers Adhikari and Yin studied air pollution in Queens, New York, comparing levels of PM2.5 with

COVID-19 infection and mortality rates. While they found no significant relationship between daily PM2.5 and either COVID-19 infection or mortality, they did uncover a significant positive association with new confirmed cases(Adhikari & Yin, 2020). A study of 14,783 COVID-19 patients found long-term exposure to fine particulate matter (PM2.5) is associated with increased hospitalization risk. Among the participants, 13.6% were hospitalized. Researchers analyzed both average PM2.5 exposure over the past 10 years and estimated exposure for the year 2018. The study found that for every 1 $\mu\text{g}/\text{m}^3$ increase in PM2.5, the odds of hospitalization rose by 18% (10-year average) and 14% (2018 estimate). While this suggests a link, further research is needed to confirm causation and explore the underlying mechanisms(Mendy et al., 2021). A study has revealed a potential link between increased air pollution and higher COVID-19 death rates. Researchers found that every 1 microgram per cubic meter ($\mu\text{g}/\text{m}^3$) increase in fine particulate matter (PM2.5) was associated with an 8% rise in COVID-19 deaths. This association was statistically significant and remained consistent even after accounting for other potential influencing factors.(Wu, Nethery, Sabath, Braun, & Dominici, 2020). While some studies indicate a link between air pollution and COVID-19 severity, findings remain mixed. One study found no significant association between long-term exposure to PM2.5 or ozone (O₃) and COVID-19 case-fatality rate. However, they did observe a weak but potentially important connection between higher PM2.5 levels (an increase of 2.6 micrograms per cubic meter) and a 14.9% increase in COVID-19 mortality rate, even after adjusting for other air pollutants. This suggests further investigation is needed to clarify the complex relationship between air pollution and COVID-19 outcomes(Liang et al., 2020). A study found a $10.5\% \pm 2.5\%$ increase in mortality per 1 $\mu\text{g}/\text{m}^3$ increase in air pollution. However, this impact lessened over time, suggesting potential factors like improved pandemic management and broader vaccination after mid-2021. Interestingly, despite potential differences in initial conditions, the relative trend of mortality increase with higher air pollution was consistent across the studied countries(Renard et al., 2022). A review paper by Arun Srivastava explores the relationship between various pollution parameters and the number of COVID-19 cases. The findings reveal diverse correlations, including some with no correlation, others exhibiting a negative relationship, and some indicating a positive association(Srivastava, 2021). The reason why some studies find a positive relationship between PM and COVID-19 cases, while others do not, can be attributed to the fact that correlation does not imply causation. To establish causation, researchers need to conduct carefully designed studies, such as randomized controlled trials or longitudinal studies, to demonstrate a direct cause-and-effect relationship between PM levels and COVID-19 outcomes.

Indeed, emissions from the combustion of diesel fuel in cars and other vehicles are recognized as a significant source of particulate matter (PM) in urban areas (McDuffie et al., 2021; Nava et al., 2020). As a result, regions with higher population density tend to have more transportation activities, contributing to increased levels of PM(Aljoufie, Zuideest, Brussel, & Van Maarseveen, 2011; Maniat, Abdoli, Raufi, & Marous) During the COVID-19 lockdowns implemented in response to the pandemic, there were significant reductions in urban activity, including a decrease in transportation and industrial activities. As a result, there was a noticeable reduction in emissions, including those of particulate matter. This reduction in human activity led to improvements in air quality in many urban areas during the lockdown periods(Manjeet, Airon, Kumar, & Saifi, 2022). Population is a crucial factor in urban areas, as it reflects the concentration of individuals in a given space. Areas with higher populations are more likely to experience quick spreading of infectious diseases, including COVID-19(Ahmed, Jaman, Saha, & Ghosh, 2021). While areas with larger populations tend to have more reported COVID-19 cases (correlation), it does not necessarily mean that, the population itself directly causes the spread of the virus (causation). Just like flipping a coin multiple times increases the likelihood of observing both heads and tails, having a larger population in an area might lead to more reported COVID-19 cases due to an increased chance of encountering infected individuals. However, this correlation does not imply that population size directly causes the occurrence of COVID-19 cases. Two studies Malaysia found a strong positive and statistically significant correlation between the total

population and COVID-19 cases, indicating that larger populations were associated with higher case numbers. However, the relationship between population density and the spread of COVID-19 was weaker(Aw et al., 2021; H. S. Wong, Hasan, Sharif, & Rahman, 2023). Using cumulative frequency reports of COVID-19 cases or deaths in research studies can lead to several common mistakes and misinterpretations. Cumulative data grows over time, and using it directly in analysis may introduce a time-dependent bias. Cumulative data may not adequately control for confounding factors such as public health interventions, population mobility, healthcare capacity, and socioeconomic variables. Failing to account for these factors can lead to spurious correlations. For instance, two studies found a correlation between population density and COVID-19 in the USA (Sy, White, & Nichols, 2021; D. W. Wong & Li, 2020), using cumulative frequency reports of COVID-19. Of course, the population density in specific places, such as hospitals, public transportation, and cruise ships(Rocklöv & Sjödin, 2020), can significantly contribute to the transmission of COVID-19 in localized settings, it is crucial to clarify that our study's primary objective is to investigate this phenomenon on a broader macro scale, covering provinces, cities, and countries. We seek to discern the distinction between physical distancing and population density. It is imperative to recognize that while the density, calculated as city population divided by area, may be high in a city, it does not necessarily correlate with low levels of physical distancing. In the study (D. W. Wong & Li, 2020)there is an assumption that the level of physical distancing is contingent on population density, implying that areas with higher population density experience a greater incidence of the coronavirus. Consequently, the study concludes that population density is a significant variable influencing COVID-19 cases. However, it's essential to approach this assumption with a nuanced perspective. While there may be a correlation between population density and COVID-19 cases, establishing a direct causation is complex. The relationship is influenced by various factors, including local public health interventions, cultural practices, healthcare infrastructure, and individual behaviors. Our research seeks to explore this intricate relationship on a broader macro scale, encompassing provinces, cities, and countries. By considering multiple variables and potential confounders, we aim to contribute to a more comprehensive understanding of the factors influencing COVID-19 transmission dynamics. In another study conducted in America, focusing on 913 counties, they found that metropolitan population density played a significant role as a predictor of infection rates. However, they observed that county density, by itself, was not significantly related to the infection rate. Instead, the study highlighted that connectivity, which involves factors beyond just density, appears to have a more significant impact on infection rates(Hamidi, Sabouri, & Ewing, 2020).

Considering the complexities of the association between air pollution and the spread of COVID-19, it would be reasonable to expect that regions with higher wind speeds, resulting in lower pollution levels, would also have fewer COVID-19 cases if all other factors were equal. However, despite this logical expectation, studies have not consistently shown a correlation between wind speed, pollution, and COVID-19 cases. The Gaussian air pollutant dispersion equation is indeed one of the earliest and simplest forms of pollutant dispersion modeling. It describes how air pollutants disperse and spread in the atmosphere under the influence of wind and other meteorological factors(Abdel-Rahman, 2008) Higher wind speeds can enhance the dispersion of air pollutants, leading to lower local pollution levels in densely populated cities. In areas with high wind speeds, it is expected that air pollutants would disperse more effectively, potentially reducing the concentration of pollutants in the air. In the study conducted in New York, the Spearman Correlation Coefficient of +0.172 suggests a positive correlation between wind speed and COVID-19 cases. This means that higher wind speeds were associated with higher COVID-19 case counts in that particular area(Bashir, Ma, et al., 2020). On the other hand, the study in Jakarta, Indonesia, revealed a significantly negative correlation ($r = -0.314$; $p < 0.05$) between low wind speed and higher COVID-19 cases(Rendana, 2020). Moreover, the study by Shao et al. found a positive and negative correlation between wind and the number of infected, indicating a connection between pollution and COVID-19 (Shao et al., 2022). The limitations observed in existing investigations stem from the fact that both air pollution and COVID-19 infections

are correlated both spatially and temporally. Both spatial and temporal correlations between air pollution and infections can introduce biases in the estimation of results. Typically, researchers choose to consider either spatial or temporal correlations, depending on the research question and the nature of the data being analyzed. Our study possesses several advantages. Firstly, it benefits from a large number of statistical samples, which enhances the robustness and reliability of the findings. Additionally, the research employs two different types of correlations, namely spatial and temporal to thoroughly investigate the relationship between air pollution and COVID-19. This comprehensive approach allows for a more comprehensive understanding of the potential link between air pollution and the incidence of the disease. By utilizing various correlation methods and a substantial dataset, this study aims to provide valuable insights into the impact of air pollution on COVID-19.

Methodology

Sample

This study centers on fifty-one (N= 51) states in the USA, one of the countries significantly impacted by the COVID-19 pandemic, with over 54 million cases reported over the course of two years (2020 and 2021). Due to the larger dataset of people infected with COVID-19 compared to the number of deaths, this study utilized data on the number of infected individuals for analysis.

Sources

Wind speed and air pollution data were obtained from the United States Environmental Protection Agency (EPA) website (Agency, 2020,2021) the study also obtained temperature data in Fahrenheit from the National Centers for Environmental Information(Information). COVID-19 Data Repository by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University(jhu, 2022).

Measurements

The data of PM2.5 is often reported using the Air Quality Index (AQI), which provides an overall measure of air quality based on various pollutants, including PM2.5. However, the AQI is a dimensionless index and not directly usable for quantitative analyses due to its scale and unitless nature. To facilitate statistical analysis and comparisons, researchers often convert AQI values to a more quantitative and usable unit such as micrograms per cubic meter ($\mu\text{g}/\text{m}^3$) using appropriate conversion equations. This conversion allows for the data to be expressed in a standard unit that can be utilized in statistical models and helps to establish a more meaningful relationship between PM2.5 concentrations and other variables. While the correlation between AQI and $\mu\text{g}/\text{m}^3$ values not be 1, converting AQI to $\mu\text{g}/\text{m}^3$ provides a more accurate representation of PM2.5 concentrations, enabling researchers to better understand its relationship with other variables in quantitative analyses. The AQI is given by Equation (1)(Kanchan, Gorai, & Goyal, 2015).

$$AQI = \frac{AQI_{Hi} - AQI_{Lo}}{conc_{Hi} - conc_{Lo}} \times (conc_i - conc_{Lo}) + AQI_{Lo} \quad (1)$$

Where;

Conc_i(PM2.5)= input concentration for a given pollutant(pm2.5)

Conc_{Lo}= the concentration breakpoint that is less than or equal to Conc_i

Conc_{Hi}(PM2.5)= the concentration breakpoint that is greater than or equal to Conc_i

AQI_{Lo}= the AQI breakpoint corresponding to Conc_{Lo}

AQI_{Hi}= the AQI breakpoint corresponding to Conc_{Hi}

The average wind speed is measured in meters per second (m/s) using the Instrumental - RM Young Model 05103, which is designed to measure wind speed at low altitudes. It is important to note that wind speed can vary with height, and therefore, different devices and methods may yield different results due to the variations in wind patterns at different altitudes.

Time series data for COVID-19 confirmed cases in the United States for the years 2020 and 2021 can be obtained from the CSSE (Center for Systems Science and Engineering) at Johns Hopkins University public archive data (University). In the archive, the data is initially provided as cumulative frequency, which represents the total number of COVID-19 cases up to a specific date. To use this data for analysis, it needs to be transformed into daily frequency by taking the difference between consecutive data points. To clarify, for each day, the number of new COVID-19 cases (frequency) can be calculated by subtracting the cumulative count on the previous day (t_0) from the cumulative count on the current day (t_1), denoted as $x(t_1) - x(t_0)$. In addition, the ratio of the number of cases to the total time the population is at risk of disease can also be calculated. This ratio provides insights into the incidence rate of COVID-19 cases per unit of time for each state. Furthermore, to determine population density, one can obtain the population of each state and divide it by the area of each state. In the majority of studies, researchers commonly employ Pearson correlation for assessing the relationship between variables. While some studies use Kendall and Spearman correlation, the differences in results are not significant. To facilitate comparison with other research, we also utilize Pearson correlation. Pearson's correlation coefficient (r) is a widely used measure that evaluates the strength, type, and direction of the relationship between two variables. The Pearson correlation (r) is defined as shown in Equation (2)(Akoglu, 2018).

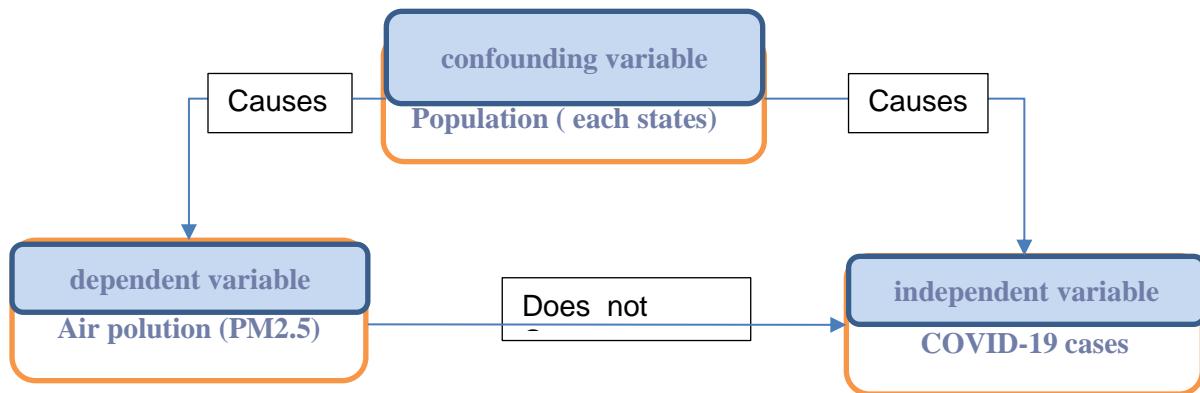
$$r = \frac{\sum(x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum(x_i - \bar{x})^2(y_i - \bar{y})^2}} \quad (2)$$

where:

r =correlation coefficient,

x_i , y_i are the values of the variable in a sample i ,

\bar{x} , \bar{y} = mean of the values of the y-variable.


In research that investigates a potential cause-and-effect relationship, a confounding variable is an unmeasured third variable that influences both the supposed cause and the supposed effect. Confounding is one of three types of bias that can distort the results of epidemiologic studies and potentially lead to erroneous conclusions(Howards, 2018)

It's important to consider potential confounding variables and account for them in your research design to ensure your results are valid. Left unchecked, confounding variables can introduce many research biases to your work, causing you to misinterpret your results. Confounding variables (a.k.a. confounders or confounding factors) are a type of extraneous variable that are related to a study's independent and dependent variables. A variable must meet two conditions to be a confounder(McNamee, 2003):

It must be correlated with the independent variable. This may be a causal relationship, but it does not have to be.

It must be causally related to the dependent variable.

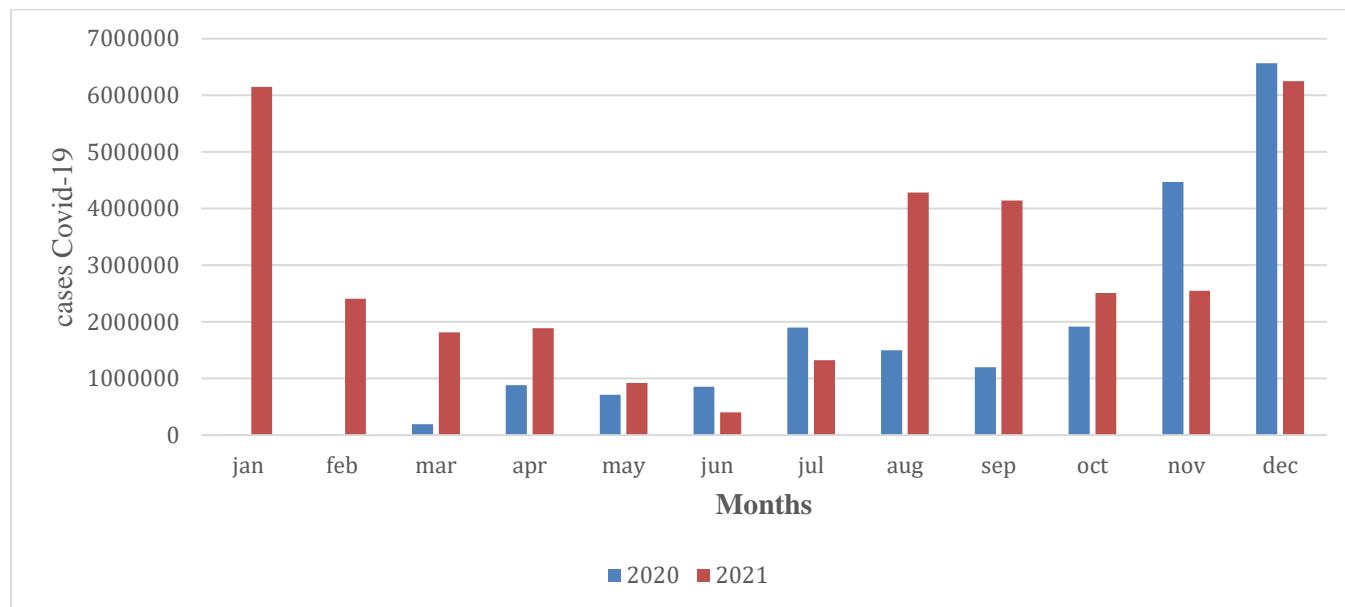
The conceptual model incorporates the idea of these two conditions, with the confounding variable being present in Figure 1.

Figure 1. Conceptual model confounding variable

The technique of multivariable regression analysis has been extensively employed to manage confounding factors, and its utilization saw significant augmentation, especially when modeling tools became easily accessible(Kahlert, Gribsholt, Gammelager, Dekkers, & Luta, 2017). Multiple regression analysis serves the purpose of evaluating the presence of confounding. Through multiple linear regression analysis, we can estimate the relationship between a specific independent variable and the outcome while keeping all other variables constant. This approach allows for the adjustment or accounting of potential confounding variables incorporated into the model. Consider a scenario with a risk factor or exposure variable denoted as X_1 (e.g., X_1 =Air pollution or X_1 =Temperature) and an outcome or dependent variable denoted as Y . The estimation of a simple linear regression equation relating the risk factor to the dependent variable is expressed as follows in equation (3).

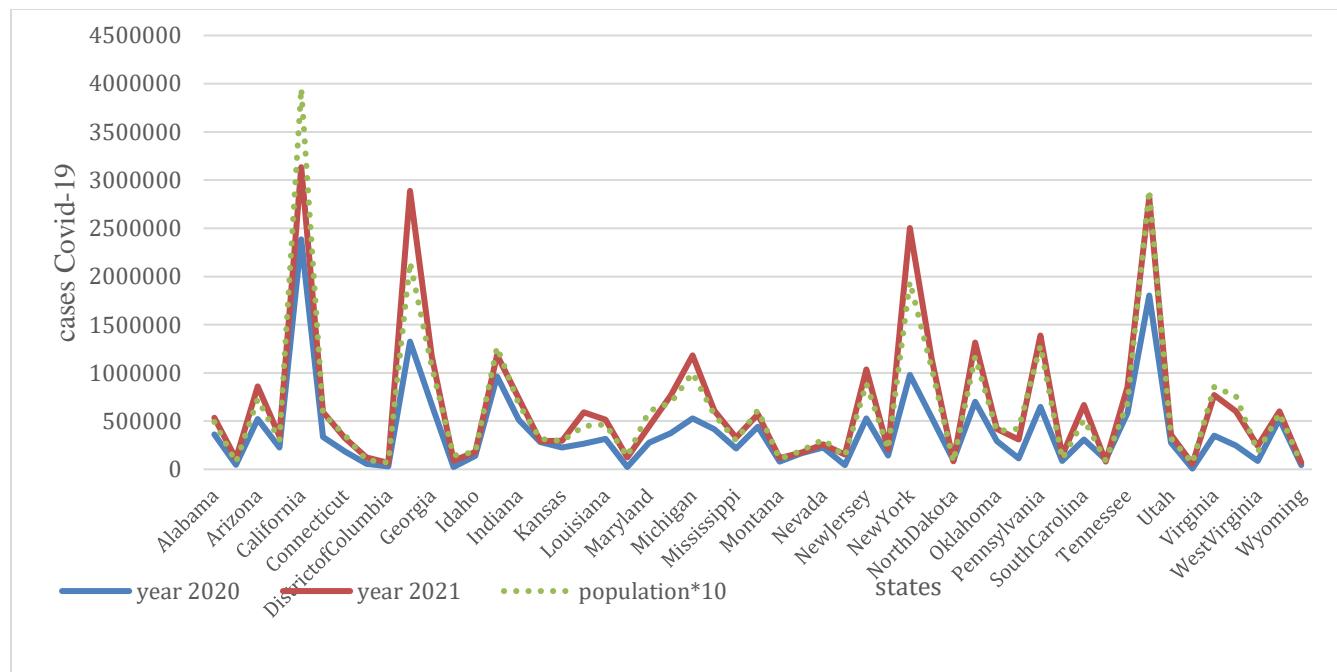
$$Y=b_0+b_1X \quad (3)$$

Suppose the aim is to assess whether a third variable (e.g., population) acts as a confounder. This potential confounder is denoted as X_2 , and the estimation involves a multiple linear regression (4).


$$Y=b_0+b_1X+b_2X_2 \quad (4)$$

Some researchers evaluate confounding by examining the extent of change in the regression coefficient associated with the risk factor after adjusting for the potential confounder. In this context, a comparison is made between b_1 from the simple linear regression model and b_1 from the multiple linear regression model. As a general guideline, when there is a shift of more than 10% in the regression coefficient derived from the simple linear regression model, it is commonly considered that X_2 functions as a confounding variable(Harrell Jr, Lee, & Mark, 1996; Sudin, Aziz, Saad, Khalid, & Ibrahim, 2021; Vittinghoff, Shiboski, Glidden, & McCulloch, 2005).

Results


Figure 2 depicts the number of confirmed COVID-19 cases in the United States throughout the years 2020 and 2021. The data shows that the peak of COVID-19 infections in 2020 occurred in December, while in 2021, the highest number of cases was reported in January. Over the entire year of 2020, a total of 20,126,950 confirmed COVID-19 cases were recorded in the United States, and this number surged to 34,505,103 in 2021. The Fig2

effectively presents the overall trend of COVID-19 cases over the two-year period, highlighting fluctuations and changes in infection rates across different months in both years.

Figure 2. The number of confirmed COVID-19 cases in the years 2020 and 2021 Source authors `s analysis

The data analysis presented in Figure 3 consistently demonstrates a high prevalence of COVID-19 cases in California, Florida, New York, and Texas throughout the two-year period. The three graphs indicate that the pattern of COVID-19 cases in these states closely correlates with their respective population sizes. States with larger populations tend to have a higher number of COVID-19 cases.

Figure 3. Number of confirmed COVID-19 in the years 2020 and 2021 Source authors `s analysis

The strong spatial correlation between COVID-19 cases in 2020 and 2021 suggests that the pattern of infections for each state repeated in the following year (Table 1). There is a significant positive correlation between the population and COVID-19 cases ($r=0.98$), supporting the idea discussed in the introduction that population size can influence the likelihood of infection. The weak correlations, close to zero, between the rate of COVID-19 cases and population, as well as population density and COVID-19 cases. Wind speed shows no correlation with COVID-19 cases, indicating it has little impact on transmission dynamics. Temperature, on the other hand, exhibits a positive correlation with COVID-19 cases. Regarding PM2.5, COVID-19 cases in 2020 show a significant positive correlation ($r=0.468$) with PM2.5, while in 2021, the correlation remains positive ($r=0.168$) but not significant. Additionally, the correlation between the rate of COVID-19 cases and PM2.5 is close to zero, suggesting their independence.

Table 1. Spatial correlation and COVID-19 cases in different states Source authors `s analysis

	COVI D-20	COVI D-21	r2020	r2021	pop	densit y	pm202 0	pm20 21	temp2 020	temp2021	wind2020	wind2021	
COVID-20	1	.948**	0.045	-0.023	.982**	-0.095	.468**	.289*	.338*	.333*	-0.012	-0.011	
COVID-21	.948**	1	-0.071	0.1	.967**	-0.084	.340*	0.168	.349*	.338*	-0.092	-0.101	
rate2020	0.045	-0.071	1	0.253	-0.083	-0.169	0.09	.368**	-0.13	-0.113	.374**	.392**	
rate2021	-0.023	0.1	0.253	1	-0.054	-0.082	-0.139	-0.067	-0.105	-0.136	-.286*	-.304*	
population	.982**	.967**	-0.083	0.054	-	1	-0.082	.450**	0.244	.324*	.316*	-0.065	-0.065
density	-0.095	-0.084	-0.169	0.082	-0.082	-	1	0.092	0.09	0.12	0.104	-0.1	-0.104
pm2020	.468**	.340*	0.09	-0.139	.450**	0.092	-	1	.803**	0.076	0.071	0.032	0.057
pm2021	.289*	0.168	.368**	-0.067	.244	0.09	.803**	-	1	-0.052	-0.046	0.17	0.188
temp2020	.338*	.349*	-0.13	0.105	.324*	0.12	0.076	-0.052	-	1	.998**	-0.115	-0.083
temp2021	.333*	.338*	-0.113	-0.136	.316*	0.104	0.071	-0.046	.998**	-	1	-0.078	-0.046
wind2020	-0.012	-0.092	.374**	-.286*	-0.065	-0.1	0.032	0.17	-0.115	-0.078	1	.973**	
wind2021	-0.011	-0.101	.392**	-.304*	-0.065	-0.104	0.057	0.188	-0.083	-0.046	.973**	1	

**. Correlation is significant at the 0.01 level (2-tailed). *. Correlation is significant at the 0.05 level (2-tailed).

Table 2 displays the Temporal correlation between different variables. The correlation between COVID-19 cases in 2020 and 2021 is found to be $r=0.384$, which is much weaker than the spatial correlation observed earlier. This suggests that the relationship between COVID-19 cases is dependent on spatial variables, not temporal variables. . The correlation between temperatures in 2020 and 2021 is high, indicating that the temperature pattern remains consistent in most states of America and is repeated year after year. The 7th and 8th months of the year are typically the hottest months. Additionally, there is a high and significant correlation between wind speed in 2020 and 2021 ($r=0.899$). Wind speed and temperature tend to have an inverse relationship, where higher wind speeds are associated with cooler temperatures. Furthermore, the correlation between wind speed and PM2.5 is -0.685 and -0.613 (p-value <0.01) for the years 2020 and 2021, respectively. This indicates that when wind speed is higher, PM2.5 levels tend to be lower. Regarding COVID-19 cases, there is a positive correlation with PM2.5 in both 2020 ($r=0.111$) and 2021 ($r=0.235$).

Table 2. Temporal correlation between pollution and COVID-19 cases Source authors `s analysis

	COVID-2020	COVID-2021	temp2020	temp2021	wind2020	wind2021	pm2020	pm2021
COVID-20	1	0.384	-0.175	-0.104	-0.273	-0.182	0.111	-0.005
COVID-21	0.384	1	-0.455	-0.398	-0.375	-0.176	0.355	0.235
temp2020	-0.175	-0.455	1	.986**	-0.529	-.620*	0.295	0.528
temp2021	-0.104	-0.398	.986**	1	-0.551	-.603*	0.327	0.477
wind2020	-0.273	-0.375	-0.529	-0.551	1	.899**	-.685*	-.689*
wind2021	-0.182	-0.176	-.620*	-.603*	.899**	1	-0.556	-.613*
pm2020	0.111	0.355	0.295	0.327	-.685*	-0.556	1	0.331
pm2021	-0.005	0.235	0.528	0.477	-.689*	-.613*	0.331	1

**. Correlation is significant at the 0.01 level (2-tailed). *. Correlation is significant at the 0.05 level (2-tailed).

In the context of multiple regression, the Table 3 provides an overview of the R-Square, Std. Error of the Estimate, R-Square Change, F Change, and Significance of F Change for each model, incorporating various sets of predictors such as the constant, pm, temperature, wind, and population. Model 4 is the best model as it has the highest R-squared value of 0.847. the R-squared change value of 0.656 suggests that population explains 65.6% of the remaining variance in the dependent variable after accounting for the other independent variables in the model. This is a significant increase, and it suggests that population is indeed a confounding variable.

Table 3. Model Summary Source authors `s analysis

Model	R Square	Std. Error of the Estimate	R Square Change	F Change	Sig. Change	F
1	a. Predictors: (Constant), pm	0.087	596876.16057	0.087	9.517	0.003
2	b. Predictors: (Constant), pm, temperature	0.185	566575.96405	0.099	11.982	0.001
3	c. Predictors: (Constant), pm, temperature, wind	0.190	567708.50660	0.005	0.605	0.438
4	d. Predictors: (Constant), pm, temperature, wind, population	0.847	248202.09317	0.656	415.703	0.000

Table 4. regression results Coefficients Source authors `s analysis

Model	Unstandardized Coefficients		Standardized Coefficients			95.0% Confidence Interval for B	
	B	Std. Error	Beta	t	Sig.	Lower Bound	Upper Bound
1	(Constant)	-79946.814	207796.301	-0.385	0.701	-492208.757	332315.130
	pm	59529.328	19297.089	0.295	3.085	0.003	21244.453
2	(Constant)	-1255637.504	392769.598	-3.197	0.002	-2034977.599	-476297.410
	pm	58455.988	18320.104	0.289	3.191	0.002	22104.928
3	temperature	21971.717	6347.476	0.314	3.461	0.001	9376.948
	(Constant)	-1139117.126	421084.237	-2.705	0.008	-1974745.090	-303489.162
4	pm	60440.713	18533.106	0.299	3.261	0.002	23662.368
	temperature	21588.773	6379.179	0.309	3.384	0.001	8929.500
	wind	-27986.691	35969.267	-0.072	-0.778	0.438	-99366.529
	(Constant)	-16004.504	192162.430	-0.083	0.934	-397393.734	365384.725
	pm	-4459.725	8705.497	-0.022	-0.512	0.610	-21737.727
	temperature	1756.935	2953.726	0.025	0.595	0.553	7619.265
	wind	-65.921	15785.272	0.000	-0.004	0.997	-31395.316
	population	0.078	0.004	0.919	20.389	0.000	0.070
							0.086

The standardized coefficient for population in model 4 is 0.919, which is very significant. Indeed, based on Table 4, it is evident that the population (variable) exhibits a significant influence on the dependent variable. This indicates that population is a confounding variable, meaning that it is an extraneous factor that is correlated with both the independent variable (PM) and the dependent variable (COVID-19 cases). This can make it difficult to isolate the true relationship between PM and COVID-19 cases. The fact that the coefficient for PM decreases by more than 10% after controlling for population suggests that population is indeed a confounding variable. This means that PM is not the sole cause of COVID-19 cases, and that population must also be considered a factor.

Discussion

Our study employed spatial and temporal correlation analyses to explore the relationships between wind, temperature, pollution, population density, and COVID-19 cases. The findings suggest correlations between pollution and COVID-19 cases but caution against making direct causative conclusions. While many studies have shown a correlation between air pollution and the number of COVID-19 infections, it does not imply causality. During lockdown periods, we observed a decrease in pollution, and studies have shown that the disease itself caused a decrease in air pollution(Su et al., 2023). However, this correlation does not indicate causation but rather reflects the simultaneous occurrence of two phenomena. Observing similar patterns between the graphs of mortality and infection rates in Europe(Renard, Surcin, Annesi-Maesano, & Poincet, 2023a), researchers may be inclined to automatically assume that pollution has a strong effect on COVID-19. There are several reasons why caution is necessary in making such conclusions:

1-Correlation does not imply causation: Just because two variables (in this case, air pollution and COVID-19 outcomes) show similar patterns does not necessarily mean that one directly causes the other. There could be other factors at play that are responsible for the observed associations. To demonstrate the potential for such errors, you used the rate of infected people (the number of infected individuals divided by the population of the state) and found that its correlation with air pollution was close to zero. This finding suggests that there is no strong linear relationship between air pollution and the rate of COVID-19 infections.

2-Confounding factors: The observed patterns in COVID-19 cases could be influenced by numerous confounding factors, such as population. These factors may influence both air pollution levels and the spread of COVID-19 independently(Kelly et al., 2023). Although the spatial correlation in Table 1 shows the effect of population on COVID-19 and pollution at a significant level ($p\text{-value}<0.01$). Population is one such confounding factor that can impact both air pollution levels and the spread of COVID-19 independently. A larger population in an area may lead to more reported COVID-19 cases due to the increased likelihood of encountering infected individuals. However, this correlation does not imply that population size directly causes the occurrence of COVID-19 cases. If population size were the primary determinant of COVID-19 cases, then population density would also have a similar effect on both COVID-19 cases and air pollution (But the correlation is close to zero).

3-Regional variations: Consistent with previous research(Coşkun, Yıldırım, & Gündüz, 2021; Rendana, 2020) areas experiencing higher wind speeds tend to have lower levels of PM2.5 pollution. Interestingly, we also observed a temporal correlation between lower wind speeds and increased COVID-19 cases. This temporal correlation suggests that reduced wind speeds might contribute to higher COVID-19 case numbers. However, when examining the spatial correlation, we found a positive association. This suggests that factors beyond just wind speed and pollution may influence the spatial distribution of COVID-19 cases.

Conclusions

The global impact of the COVID-19 pandemic, stemming from a highly contagious virus within the SARS family, has been widespread, affecting over 200 countries and leading to more than 6.9 million deaths as of the current date (Rahimi, Chen, & Gandomi, 2023). The study identifies a correlation between air pollution and COVID-19 cases, emphasizing the need for cautious interpretation. Although a correlation exists, it does not necessarily imply a causal relationship, prompting consideration of other variables such as population and wind speed. The intricate relationship among air pollution, COVID-19, and various factors requires further research. It is stressed that the correlation between two variables does not automatically suggest a direct cause-and-effect connection; additional factors may account for the observed correlation. The study recognizes confounding factors, with population identified as one such factor, correlated with both air pollution and COVID-19 cases, while wind speed shows the correlation solely with air pollution. While exposure to air pollution is linked to heightened vulnerability in COVID-19 patients, it cannot be definitively stated that pollution directly causes exacerbation of COVID-19. Various contributors, including temperature, lifestyle, population density, and nutrition, play roles in the incidence of COVID-19. Notably, the rate of COVID-19 infection is not correlated with population and population density, categorizing the impact of population on infection as a probability effect rather than an effective and causal variable. To achieve a more comprehensive understanding of the intricate interactions between air pollution and COVID-19, it is essential to collect data from different states or cities. Establishing a robust causal relationship demands rigorous scientific investigations, including longitudinal studies with meticulous control of confounding factors, as well as experimental studies and causal modeling. While mounting evidence suggests that air pollution may exacerbate respiratory conditions and increase vulnerability to infections, including COVID-19, it is crucial to refrain from drawing definitive conclusions solely based on visual observations of graphs. A careful and nuanced approach is essential in unraveling the complexities of the relationship between air pollution and COVID-19 outcomes.

Declaration: We (all authors) declare that the paper is our original work and is not published anywhere.

Acknowledgment: None

Funding: There is no funding for this study

Conflict of Interest: The authors declare that they have no conflict of interest.

Authors contribution: Conceptualization: Mohammad Maniat, Methodology: Hosein Habibi, Mohammad Maniat; Software: Payam Marous, Validation: Elham Manshoorinia, Resources; Data Curation: Masoud Omrani; Writing—Original Draft Preparation: Parisa Raufi, Writing—Review

Data availability: All the code files necessary to reproduce the results of this study are available at <https://doi.org/10.5281/zenodo.8197105>

References

Abdel-Rahman, A. A. (2008). *On the atmospheric dispersion and Gaussian plume model*. Paper presented at the Proceedings of the 2nd International Conference on Waste Management, Water Pollution, Air Pollution, Indoor Climate, Corfu, Greece.

Adhikari, A., & Yin, J. (2020). Short-term effects of ambient ozone, PM2. 5, and meteorological factors on COVID-19 confirmed cases and deaths in Queens, New York. *International journal of environmental research and public health*, 17(11), 4047.

Agency, U. S. E. P. (2020,2021). Pre-Generated Data Files. https://aqs.epa.gov/aqsweb/airdata/download_files.html#Annual.

Ahmed, J., Jaman, M. H., Saha, G., & Ghosh, P. (2021). Effect of environmental and socio-economic factors on the spreading of COVID-19 at 70 cities/provinces. *Helijon*, 7(5).

Akoglu, H. (2018). User's guide to correlation coefficients. *Turkish journal of emergency medicine*, 18(13): p. 91-93.

Al-kasasbeh, O. (2022). COVID-19 pandemic: macroeconomic impacts and understanding its implications for Jordan. *Journal of Environmental Science and Economics*, 1(2), 51-57.

Aljoufie, M., Zuidgeest, M., Brussel, M., & Van Maarseveen, M. (2011). Urban growth and transport: understanding the spatial temporal relationship. *Urban transport XVII: urban transport and the environment in the 21st Century*. WIT press, Southampton, 315-328.

Aw, S. B., Teh, B. T., Ling, G. H. T., Leng, P. C., Chan, W. H., & Ahmad, M. H. (2021). The covid-19 pandemic situation in malaysia: Lessons learned from the perspective of population density. *International journal of environmental research and public health*, 18(12), 6566.

Bashir, M. F., Jiang, B., Komal, B., Bashir, M. A., Farooq, T. H., Iqbal, N., & Bashir, M. (2020). Correlation between environmental pollution indicators and COVID-19 pandemic: a brief study in Californian context. *Environmental Research*, 187, 109652.

Bashir, M. F., Ma, B., Komal, B., Bashir, M. A., Tan, D., & Bashir, M. (2020). Correlation between climate indicators and COVID-19 pandemic in New York, USA. *Science of the total environment*, 728, 138835.

Bontempi, E. (2020). First data analysis about possible COVID-19 virus airborne diffusion due to air particulate matter (PM): the case of Lombardy (Italy). *Environmental Research*, 186, 109639.

Chaudhary, V., Bhadola, P., Kaushik, A., Khalid, M., Furukawa, H., & Khosla, A. (2022). Assessing temporal correlation in environmental risk factors to design efficient area-specific COVID-19 regulations: Delhi based case study. *Scientific Reports*, 12(1), 12949. doi:10.1038/s41598-022-16781-4

Coşkun, H., Yıldırım, N., & Gündüz, S. (2021). The spread of COVID-19 virus through population density and wind in Turkey cities. *Science of the total environment*, 751, 141663.

Czwojdzińska, M., Terpińska, M., Kuźniarski, A., Płaczkowska, S., & Piwowar, A. (2021a). Exposure to PM2. 5 and PM10 and COVID-19 infection rates and mortality: a one-year observational study in Poland. *Biomedical journal*.

Czwojdzińska, M., Terpińska, M., Kuźniarski, A., Płaczkowska, S., & Piwowar, A. (2021b). Exposure to PM2. 5 and PM10 and COVID-19 infection rates and mortality: A one-year observational study in Poland. *biomedical journal*, 44(6), S25-S36.

Groulx, N., Urch, B., Duchaine, C., Mubareka, S., & Scott, J. A. (2018). The Pollution Particulate Concentrator (PoPCon): A platform to investigate the effects of particulate air pollutants on viral infectivity. *Science of the total environment*, 628, 1101-1107.

Halos, S. H., Al-Dousari, A., Anwer, G. R., & Anwer, A. R. (2021). Impact of PM2. 5 concentration, weather and population on COVID-19 morbidity and mortality in Baghdad and Kuwait cities. *Modeling Earth Systems and Environment*, 1-10.

Hamidi, S., Sabouri, S., & Ewing, R. (2020). Does density aggravate the COVID-19 pandemic? Early findings and lessons for planners. *Journal of the American Planning Association*, 86(4), 495-509.

Harrell Jr, F. E., Lee, K. L., & Mark, D. B. (1996). Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. *Statistics in medicine*, 15(4), 361-387.

Howards, P. P. (2018). An overview of confounding. Part 2: how to identify it and special situations. *Acta obstetricia et gynecologica Scandinavica*, 97(4), 400-406.

Information, N. C. f. E. <https://www.ncei.noaa.gov/access/monitoring/climate-at-a-glance/statewide/time-series>.

jhu. (2022). Coronavirus COVID-19 Global Cases by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University. https://github.com/CSSEGISandData/COVID-19/blob/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_US.csv.

Kahlert, J., Gribsholt, S. B., Gammelager, H., Dekkers, O. M., & Luta, G. (2017). Control of confounding in the analysis phase—an overview for clinicians. *Clinical epidemiology*, 195-204.

Kanchan, K., Gorai, A. K., & Goyal, P. (2015). A review on air quality indexing system. *Asian Journal of Atmospheric Environment*, 9(2), 101-113.

Kelly, S. L., Shattock, A. J., Ragettli, M. S., Vienneau, D., Vicedo-Cabrera, A. M., & de Hoogh, K. (2023). The Air and Viruses We Breathe: Assessing the Effect the PM2.5 Air Pollutant Has on the Burden of COVID-19. *Atmosphere*, 14(5), 887.

Liang, D., Shi, L., Zhao, J., Liu, P., Sarnat, J. A., Gao, S., . . . Scovronick, N. (2020). Urban air pollution may enhance COVID-19 case-fatality and mortality rates in the United States. *The Innovation*, 1(3).

Maniat, M., Abdoli, R., Raufi, P., & Marous, P. Trip Distribution Modeling Using Neural Network and Direct Demand Model.

Maniat, M., Habibi, H., Manshoorinia, E., Marous, P., Pirayvatlou, P. S., & Majidi, A. (2023). Temporal and Spatial Correlation of Air Pollution with COVID-19 in the USA: Challenges and Implications.

Manjeet, Airon, A., Kumar, R., & Saifi, R. (2022). Temporal and spatial impact of lockdown during COVID-19 on air quality index in Haryana, India. *Scientific Reports*, 12(1), 20046. doi:10.1038/s41598-022-20885-2

McDuffie, E. E., Martin, R. V., Spadaro, J. V., Burnett, R., Smith, S. J., O'Rourke, P., . . . Shah, V. (2021). Source sector and fuel contributions to ambient PM2.5 and attributable mortality across multiple spatial scales. *Nature communications*, 12(1), 3594.

McNamee, R. (2003). Confounding and confounders. *Occupational and environmental medicine*, 60(3), 227-234.

Mendy, A., Wu, X., Keller, J. L., Fassler, C. S., Apewokin, S., Mersha, T. B., . . . Pinney, S. M. (2021). Air pollution and the pandemic: Long-term PM2.5 exposure and disease severity in COVID-19 patients. *Respirology*, 26(12), 1181-1187.

Nava, S., Calzolai, G., Chiari, M., Giannoni, M., Giardi, F., Becagli, S., . . . Lucarelli, F. (2020). Source apportionment of PM2.5 in Florence (Italy) by PMF analysis of aerosol composition records. *Atmosphere*, 11(5), 484.

Otto, E., Opatoki, A., & Luyi, D. (2022). Water, sanitation and hygiene practice among students in secondary school, Ijebu Ode, Nigeria. *Journal of Environmental Science and Economics*, 1(3), 15-19.

Rahimi, I., Chen, F., & Gandomi, A. H. (2023). A review on COVID-19 forecasting models. *Neural Computing and Applications*, 35(33), 23671-23681.

Renard, J.-B., Surcin, J., Annesi-Maesano, I., Delaunay, G., Poincelet, E., & Dixsaut, G. (2022). Relation between PM2.5 pollution and Covid-19 mortality in Western Europe for the 2020–2022 period. *Science of the total environment*, 848, 157579.

Renard, J.-B., Surcin, J., Annesi-Maesano, I., & Poincelet, E. (2023a). Temporal Evolution of PM2.5 Levels and COVID-19 Mortality in Europe for the 2020–2022 Period. *Atmosphere*, 14(8), 1222.

Renard, J.-B., Surcin, J., Annesi-Maesano, I., & Poincelet, E. (2023b). Temporal Evolution of PM2.5 Levels and COVID-19 Mortality in Europe for the 2020–2022 Period. *Atmosphere*, 14(8), 1222.

Rendana, M. (2020). Impact of the wind conditions on COVID-19 pandemic: a new insight for direction of the spread of the virus. *Urban climate*, 34, 100680.

Rocklöv, J., & Sjödin, H. (2020). High population densities catalyse the spread of COVID-19. *Journal of travel medicine*, 27(3), taaa038.

Setti, L., Passarini, F., De Gennaro, G., Barbieri, P., Licen, S., Perrone, M. G., . . . Di Gilio, A. (2020). Potential role of particulate matter in the spreading of COVID-19 in Northern Italy: first observational study based on initial epidemic diffusion. *BMJ open*, 10(9), e039338.

Shao, L., Cao, Y., Jones, T., Santosh, M., Silva, L. F., Ge, S., . . . BéruBé, K. (2022). COVID-19 mortality and exposure to airborne PM2. 5: A lag time correlation. *Science of the total environment*, 806, 151286.

Srivastava, A. (2021). COVID-19 and air pollution and meteorology-an intricate relationship: A review. *Chemosphere*, 263, 128297.

Su, Z., Lin, L., Xu, Z., Chen, Y., Yang, L., Hu, H., . . . Luo, S. (2023). Modeling the Effects of Drivers on PM2.5 in the Yangtze River Delta with Geographically Weighted Random Forest. *Remote Sensing*, 15(15), 3826.

Sudin, S., Aziz, A. N. A., Saad, F. S. A., Khalid, N. S., & Ibrahim, I. I. (2021). *Cycling performance prediction based on cadence analysis by using multiple regression*. Paper presented at the Journal of Physics: Conference Series.

Sy, K. T. L., White, L. F., & Nichols, B. E. (2021). Population density and basic reproductive number of COVID-19 across United States counties. *Plos one*, 16(4), e0249271.

University, J. H. time series covid19 confirmed US <https://github.com/CSSEGISandData>.

Van Doremalen, N., Bushmaker, T., Morris, D. H., Holbrook, M. G., Gamble, A., Williamson, B. N., . . . Gerber, S. I. (2020). Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. *New England journal of medicine*, 382(16), 1564-1567.

Vittinghoff, E., Shiboski, S. C., Glidden, D. V., & McCulloch, C. E. (2005). Linear regression. *Regression methods in biostatistics: Linear, logistic, survival, and repeated measures models*, 69-131.

Wong, D. W., & Li, Y. (2020). Spreading of COVID-19: Density matters. *Plos one*, 15(12), e0242398.

Wong, H. S., Hasan, M. Z., Sharif, O., & Rahman, A. (2023). Effect of total population, population density and weighted population density on the spread of Covid-19 in Malaysia. *Plos one*, 18(4), e0284157.

Wu, X., Nethery, R. C., Sabath, M. B., Braun, D., & Dominici, F. (2020). Exposure to air pollution and COVID-19 mortality in the United States: A nationwide cross-sectional study. *MedRxiv*, 2020.2004.2005.20054502.

Zoran, M. A., Savastru, R. S., Savastru, D. M., & Tautan, M. N. (2020). Assessing the relationship between surface levels of PM2. 5 and PM10 particulate matter impact on COVID-19 in Milan, Italy. *Science of the total environment*, 738, 139825.

RESEARCH ARTICLE

The Threshold level of Institutional Quality in the Nexus between Financial Development and Environmental Sustainability in Nigeria

Nyonnoh Grace Oje^{1*}

¹Department of Economics Obafemi Awolowo University, Ile-Ife, Nigeria

Corresponding author: Nyonnoh Grace Oje; graceoje2019@gmail.com

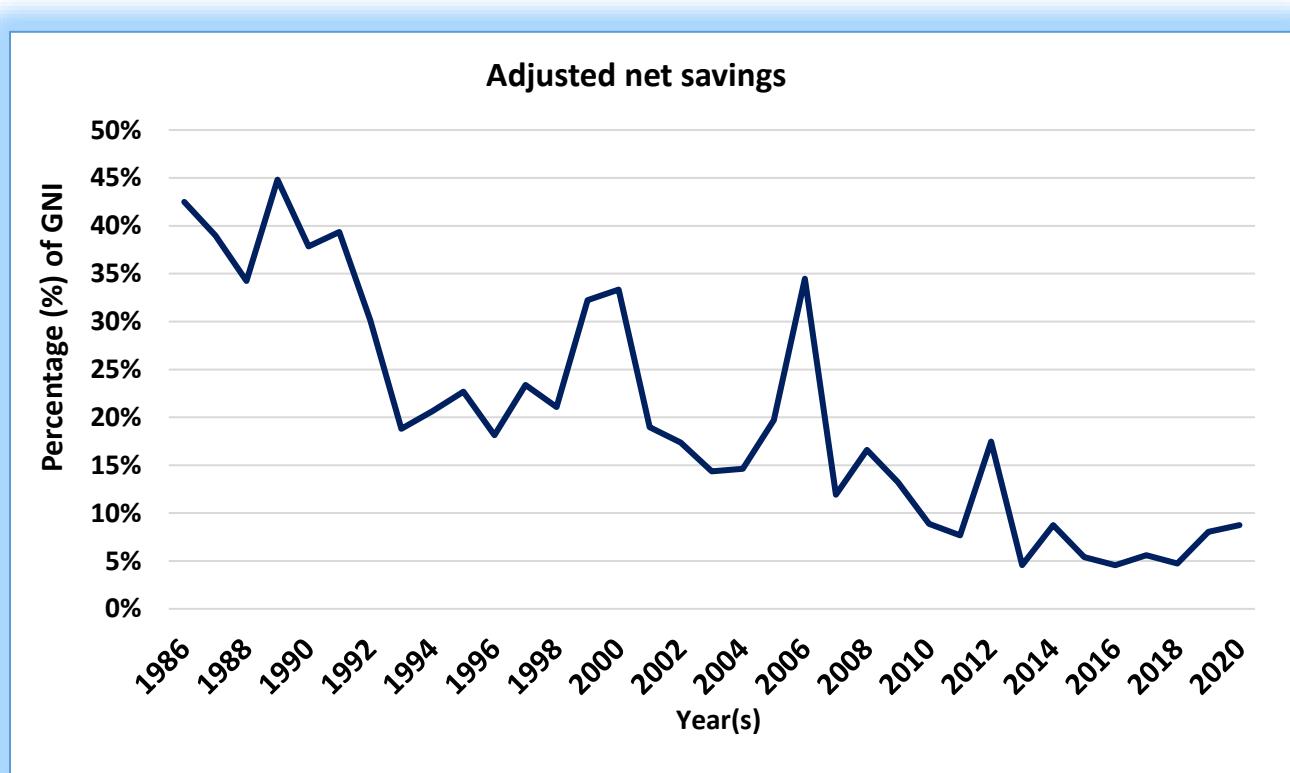
Received: 29 December, 2023, Accepted: 14 February, 2024, Published: 22 February, 2024

Abstract

Empirics on the relationship between financial development and environmental sustainability remain ambiguous in the literature. The threshold level at which institutional quality facilitates the relationship between financial development and environmental sustainability in respect to the Nigerian economy is still an open question. This study investigates the threshold level of institutional quality in the link between financial development and environmental sustainability in Nigeria from 1986 to 2020. Times series threshold autoregression technique was applied to determine the threshold level of institutional quality. The result of the threshold revealed that 4.32 is the threshold level of institutional quality in Nigeria. Below the threshold level financial development is not stimulated to improve environmental sustainability but above the threshold level institutional quality stimulates financial development to improve environmental sustainability. This study suggests that institutional credibility and transparency should be enhanced beyond the threshold level to effect the needed change in increasing environmental preservation in Nigeria.

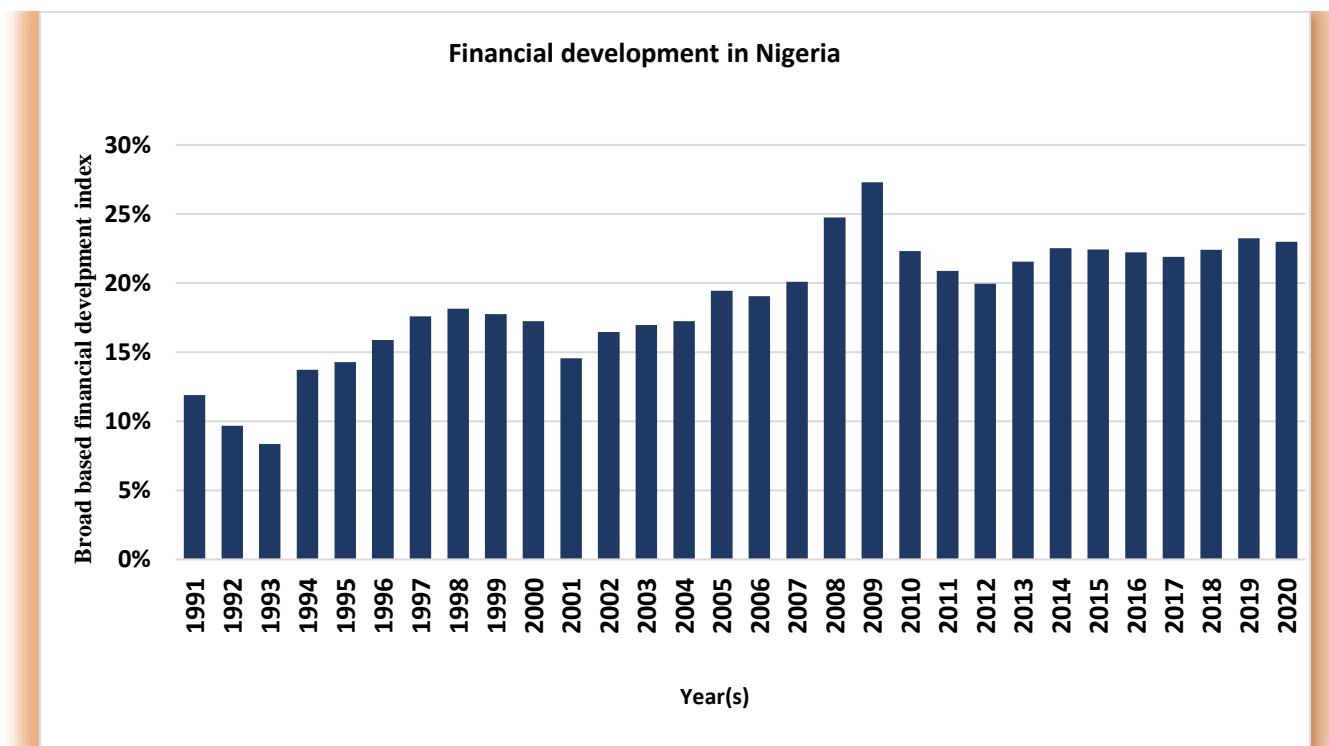
Keywords: Environmental sustainability; financial development; institutional quality; Nigeria

Introduction


Environmental sustainability is a global agenda that every country strives to attain to promote prosperity, human welfare, environmental sustenance, generational wealth and enhancement of human survival. Environmental sustainability deals with the ability to maintain the reproductive capacity of the ecosystem to meet the economic needs of future generations and sustain a safe environment for all. However, some developing nations have focused on economic growth while ignoring its environmental implications (Dada *et al.*, 2022). For instance, the growth of industrial activities, use of automobiles, energy consumption and inappropriate waste management system contributes to the increase of greenhouse gasses and environmental degradation in Nigeria (Effiom & Uche, 2021). The World bank reports that Gas flaring in Nigeria caused numerous health and respiratory issues for individuals in the Niger-delta region of Nigeria (Ifere & Abim, 2019). The Nigerian economy is plagued by inconceivable environmental hazards and pollutants, which degrades the environment (Ojong, 2018). These pollutants are caused by Gas flares, flooding and dumping of wastes into rivers and seas (Ogar *et al.*, 2018). Also, toxic wastes, industrial wastes, and plastics dumped into water bodies in Nigeria frequently decompose into micro-plastics and other chemical substances that endanger human lives (Ifere & Abim, 2019).

This occurs as a result of negative environmental activities by Nigerians that causes climate vulnerabilities and increase in carbon emissions (Ojeng, 2018). In mitigating climate irregularities and reducing carbon emissions, the financial sector plays a crucial role of mobilizing the capital required for investments in climate adaptation which increases resistance to climate change. It also provides the capital needed for climate mitigation which lowers greenhouse gas emissions especially in response to price signals like carbon taxes (Grippa, Schmittmann & Suntheim, 2019). To partially offset the cost of natural disasters and negative externalities, financial markets also offer financial protection through insurance and other risk-sharing tools like catastrophe bonds, climate bonds and green bonds. These bonds help to raise capital for climate, environmental and natural resource projects.

A well-regulated financial sector assists the economy to foster environmental sustainability by using green methods and green technologies in its daily activities to abate environmental damage (Hunjra *et al.*, 2020). More so, financial development can facilitate eco-investment and natural resource optimization that improves environmental sustainability (Baloch *et al.*, 2021). The financial sector is charged with the responsibility of aiding the economy in the management of natural resources by funding projects that are channeled towards sustainable forestry (Khan *et al.*, 2019). On the other hand, a poorly-regulated financial sector may boost environmental pollution. Financial development can spur economic growth and economic growth comes with environmental consequences (Acheampong, 2019). This is due to the fact that environmental resources are used as inputs for the production of goods and services leading to increased exploitation of natural resources (Khan *et al.*, 2022). Financial institutions also provide financial support to the transportation and energy industries, which are responsible for a rise in carbon emissions (Dada *et al.*, 2022). The transportation sector works with vehicles like cars, trucks, ships, trains, and airplanes. The use of these automobiles and planes emit carbon dioxide, which results from the combustion of environmentally hazardous fossil fuels (Dada *et al.*, 2022). Nevertheless, the effect of financial development on the environment depends on the institutional distinguishing characteristics of an economy. According to Liu *et al* (2020), developing countries are faced with environmental challenges because of its poor quality of institutions. Weak institutions may not enforce environmental standards and monitor the activities of the financial sector when it is plagued with corruption and disrespect for the rule of law (Law & Ibrahim, 2016). The financial sector in Nigeria is not exempted from this weakness as Kanu *et al* (2020) noticed that the green bond markets in Nigeria is poorly successful in meeting up with the objectives of the environmental, social and governance policies of the Nigerian economy. Thus, the Nigerian financial system still functions under institutional policies that lack an orchestrated and well-defined coherent structure which has crippled its sustainability impact on the environment (Fagbemi & Ajibike, 2018).


The performance of Nigeria on environmental sustainability and financial development proxied by adjusted net savings and financial development index, is presented in Figure 1 and 2, respectively. Figure 1, shows a declining trend of adjusted net savings from 1986 to 2020 depicting that Nigeria is not on the path of sustainability. The Nigerian economy is yet to improve its level of sustained growth to account for improvement in its environmental quality, resource maximization, savings behaviour and reduction in its consumption lifestyle. Also, Figure 2, which shows the trend of financial development in Nigeria, depicts that there are structural deficiencies in the financial sector as the performance of the broad-based financial system in Nigeria was below 30% for 35 years (1986 to 2020). Extant studies revealed that institutional quality is a critical factor that greatly influences the relationship between financial development and environmental sustainability (Gyamfi *et al.*, 2020; Hunjra *et al.*, 2021; 2020; Khan, welli & Khan, 2022). Nonetheless, weak institutions may not advance the quest to achieve a sustainable environment. In 2019, Nigeria was ranked the 2nd most corrupt country in West Africa and the 31st most corrupt country in the world (Corruption perception index, 2022). Corruption hinders the effectiveness of institutional quality in achieving environmental development (Khan *et al.*, 2022). Nigeria's inadequate and ineffective policy implementation in terms of promoting development and enhancing environmental sustainability has been mostly

attributed to government instability (Okolo, 2020). Consequently, institutional weakness may allow the ecosystem to deteriorate since it lacks the competence to enforce environmental rules and regulations (Zakaria & Bibi, 2019). This means institutions need to improve its quality to a certain level of effectiveness to effect necessary changes in the financial system and in the environment as a whole. Then the question becomes, 'at what level of institutional quality, would the financial sector be empowered and controlled to facilitate environmental sustainability? This question is yet to be addressed in the literature with particular reference to Nigeria. Thus, this study advances the existing body of knowledge on financial development and environmental sustainability in a number of ways. First, this study employs a more robust measure of financial development which accounts for the access, depth and efficiency of both financial markets and financial institutions in the economy. Previous studies have applied private credit to GDP and stock capitalization to GDP as measures of financial development (Wackernagel & Galli, 2007; Li et al., 2022) which only captures the depth of financial development neglecting other aspects of the economy. Second, the effect of institutional quality on financial development and environmental sustainability is evaluated by determining the threshold level of institutional quality in the link between financial development and environmental sustainability in Nigeria. This incentive is drawn from the assumption that sound institutions are indispensable in boosting and enhancing the financial sector in the pursuit of environmental sustainability. Third, in contrast to cross-country analysis on financial development and environmental sustainability that is ambiguous in the literature, this study focusses on country-specific analysis. This is because extant studies neglected the fact that institutional framework, financial development and economic behaviour differ between countries.

Figure 1: Adjusted net savings for Nigeria (1986-2020)

Source: World Development Indicators (2022)

Figure 2. Financial development in Nigeria (1986-2020).

Source: International Monetary Fund (2022)

Literature review

Theoretical underpinning

The foremost theoretical construct of sustainability is based on the theory of weak sustainability, propounded by Hartwick (1977) and Solow (1974). Hartwick (1977) and Solow (1974) proposed the savings-investment rule with the central assumption that natural capital and manufactured capital are perfectly substitutable. Hartwick (1977) evaluated the challenges of weak sustainability by defining the investment-savings rule, known as the “Hartwick’s rule”. Hartwick’s rule for sustainability deals with reinvesting the rents actualized from the depletion in natural resources. Solow (1974) assumed that the maximal allocation and reinvestment of resources, can be used to compensate for the natural resources that were lost, so that stock of total capital will not be depreciated over time. One benefit of weak sustainability is that it promotes scientific and technological advancements, as natural and manufactured capital can be substituted easily to meet the demands of the economy and the environment. In practice, sustainability is typically assessed by utilizing the natural environment sustainably. Empirics on financial development and environmental sustainability in the literature, have found the significant effect of this theory on Malaysia, Asia and sub-Saharan African countries (Pardi et al., 2015; Koirala & Pradhan, 2019; Ojeyinka & Osinubi, 2022).

The relationship between financial development, institutional quality, and environmental sustainability was explained by previous studies using the environmental Kuznets hypothesis (Effiom & Uche, 2021; Gyamfi et al., 2020; Zakaria & Bibi, 2019). The environmental Kuznets hypothesis is flawed due to its inability to account for

the impact of institutional and structural factors that may have an impact on the environment (Dada et al., 2021). This is due to the fact that GDP, a crude indicator of development, is used by the Environment Kuznets Curve theory which is limited to explaining the relationship between economic growth and the environment. On the other hand, the weak sustainability theory explains the relationship between development and sustainability. Currently, the global society prioritizes sustainability over economic growth.

Financial development and environmental sustainability

There is a contention in the literature on the relationship between financial development and environmental sustainability. While some empirical result revealed that financial development positively influences the environment by improving access to advanced technologies (Shabaz, Hye, Tawari & Leito, 2013; Tamazian and Rao, 2010; Kumbaroglu, 2008; Tadesse, 2005), others argue that financial development increases environmental pollution (Omri et al., 2015; Ozturk & Acaravci, 2013). For example, Shen et al (2021) noticed that financial development increases the emission of carbon while green technology helps to minimize environmental degradation. Another study also showed that financial development is detrimental to environmental sustainability as Roub et al. (2021) discovered that financial development boost environmental damage in Turkey for 56 years. The authors affirmed that financial development leads to an increase in fossil fuel consumption and agriculture really helps the environment when advanced agricultural equipment are used. Likewise, Adebayo et al. (2021) discovered that for 28 years, renewable energy increased the quality of the environment while economic growth increased environmental damage in Brazil.

The environment plays a key role in the survival of man as human activities takes place in the environment. The environment is so crucial to sustaining human life that every economy aims to preserve its resources. However, the high rate of natural resource deterioration has called for serious concern amongst economies in the world which has led to some empirical studies on environmental sustainability. In affirmation, Khan et al. (2022) revealed that control of corruption and government effectiveness increased carbon emission while regulatory quality and rule of law increases environmental quality in Iran. In the same vein, Hunjra et al. (2020) affirmed that financial development and foreign direct investment degraded the environment in Nepal, India, Bangladesh, Sri Lanka and Pakistan for 38 years. Developed and developing economies that aim at improving environmental sustainability, strives to tackle the issue of carbon emission. This is because a high carbon environment is harmful to both humans and the ecosystem. Jianguo et al. (2022) confirmed that technological innovations and institutional quality improves environmental quality. In addition, Kousar et al. (2020) noticed that financial development, trade openness and institutional quality reduced environmental degradation in Pakistan for 22 years.

Most of these studies are faulted on certain aspects. The theoretical approach of these studies was centred on the environmental kurtnet curve. The major weakness of this theory is that it is based on the assumption that all pollution will behave the same way both in lower and higher-income economies. In reality, economic and institutional peculiarity exist which can make some countries control and reduce environmental pollution more than others. The framework of the environmental Kutznet hypothesis lacks the ability to accommodate institutional and macroeconomic variables. More so, the environmental kutznet hypothesis lacks model adequacy as it is seen to be more of an empirical idea than a theoretical one (Stern, 2004).

Institutional Quality and Environmental Sustainability

The increasing activities and consumption pattern connected to economic growth and growing populations in the world has engendered environmental threats. This has drawn the attention of governmental institutions and scholars

around the world to look into possible solutions to these problems. However, there are mixed reactions on the nexus between institutional quality and environmental sustainability in the literature. Some empirical studies confirmed that institutional quality degrades the ecosystem (Hassan *et al.*, 2020; Yamineva & Liu, 2019), while other results revealed that certain indices of institutional quality such as bureaucratic quality, quality of regulation and control of corruption improves environmental quality (Adams & Klobodu, 2017; Ulucak *et al.*, 2020; Rizk & Slimane, 2018).

Ecological footprint was also employed by (Khan *et al.*, 2021) to capture the level of environmental sustainability in BRIC countries in order to examine that role of that financial development and institutional quality play in facilitating environmental quality. The authors applied the two step GMM and fixed and random effect on a 34-year period to conclude that some institutional factors enhance the environment while other factors impede environmental development. The reasons for the conflicting results in these studies could be as a result of differing institutional structures among countries.

Financial Development, Institutional Quality and Environmental Sustainability

Developed and developing economies that aim at improving environmental sustainability, strives to tackle the issue of carbon emission. This is because a high carbon environment is harmful to both humans and the ecosystem. In light of this, Jianguo *et al.* (2022) studied the effect of financial development, technological innovation, institutional quality, on environmental quality in 37 OECD countries for 30 years using the 2 step GMM approach. The authors affirmed that technological innovations and institution quality improves environmental quality. In addition, Kousar *et al.* (2020) evaluated the effect of financial development and institutional quality on environmental sustainability Pakistan for 22 years using the NARDL approach. The authors confirmed that financial development, trade openness and institutional quality reduces environmental degradation in Pakistan

These studies used carbon emission as a metric of environmental sustainability. Carbon emission only captures the carbon level of an economy neglecting the areas of energy, net forest and mineral resource depletion. Hence, these studies are faulted on the grounds of using a proxy that does not capture other basic aspects of the environment that can give a robust view of environmental sustainability.

Methodology

Theoretical framework

Environmental sustainability deals with making decisions to optimize the use of natural resources to maximize social welfare and improve environmental preservation. In the light of this, this study employs the weak sustainability theory propounded by Hartwick (1977) and Solow (1974) which is an extension of the Solow neoclassical growth model. Weak sustainability theory is centred on the assumption that manufactured capital and natural capital can be perfectly substituted. In order words, the assumptions of weak sustainability are expounded on the interchangeability between the market economy (manufactured capital) and the environment (natural capital). This theory requires that the economy maintains a sustained level of consumption pattern across generations based on the optimal use of natural resources. The underlying assumption of this theory is premised on the production function in which the level of a nation's output is determined by the level of its factor inputs. The fundamental notion of the production function is centred on physical capital (K) and labour (L) as the important factors of production but the neoclassicists (Solow, 1956; Stieglitz, 1969; Dagupsta & Heal, 1978; Solow, 1974) introduced

a variable (R), which represents natural capital. Romer (1990) extends the Solow model to include human capital. The production function is denoted as;

$$Y = F(K, H, R, T) \quad (1)$$

Where Y is the annual real output (GDP), which is a dependent function of factor inputs such as manufactured capital (K), labour (L), land (T) and natural capital (R). Specifically, R is energy resources, mineral resources and net forest resources such as crude oil, coal bauxite, phosphate, copper, Gold, Zinc, diamond, trees, plants and timber. It is assumed that no production in any sector of the economy is possible without land and natural resources (Solow, 1974). Hartwick (1977) and Solow (1974) introduced the assumption of "unbounded resource productivity" which states that national output is not totally constrained by the flow in resources. Solow (1956) proposed that in preserving natural resources, policies must be enacted to advance both human species and the ecosystem. Solow (1956) opined that for resources to be sustained overtime, each generation must consume less resources to reserve more resources for future generations to meet their own needs. As a result, Solow (1956) justify the application of the Cobb-Douglas production function which is expressed as;

$$Y_t = (K_t)^\alpha (R_t)^\beta (T_t)^\gamma (H_t)^{1-\alpha-\beta-\gamma} \quad (2)$$

$$\alpha > 0, \quad \beta > 0, \quad \gamma > 0, \quad \alpha + \beta + \gamma = 1$$

α, β, γ are the respective output elasticities of capital, natural capital and land respectively which is characterized by a constant and unitary elasticity of substitution. All exponents are assumed to be positive ($\alpha > 0, \beta > 0, \gamma > 0$). Subscript t denotes time period. Solow (1956) advocates that the substitution between manufactured capital and natural resources is possible when the output elasticity of manufactured capital is greater than the output elasticity of natural resources ($\alpha > \beta$), this way a constant level of consumption can be sustained. Similarly, Stieglitz (1969), incorporates total factor productivity (A) into the Cobb-Douglas product function. Thus, equation 3.3 is modified and augmented with total factor productivity and presented as

$$Y_t = A(K_t)^\alpha (R_t)^\beta (T_t)^\gamma (H_t)^{1-\alpha-\beta-\gamma} \quad (3)$$

Total factor productivity play an immense role in the production output of an economy. The type of equipment used in production can affect the quality of an environmental. Hence, Solow (1974) suggests that technological development is needed for environmental quality to be sustained. Thus, the exogenous growth rate of total factor productivity (A) is defined as;

$$g_A = \frac{A(t)}{A(t)} = A \theta e^{gt + fo} \quad (4)$$

Total factor productivity grows at an exogenous rate of g which carries a vector of F and O . F and O are added to depict the impact of the financial sector and institutional quality on technological progress as technological advancement improves the efficiency of investment, innovating capacities and natural resource optimization in the economy that enhances environmental sustainability. Stieglitz (1974) argues that technological progress is instrumental in compensating for the depletion in natural resources as technological progress can aid in the reduction of environmental pollution. Natural resources are found on a fixed portion of land (T) supply which denotes that in the long-run, the use of land cannot increase or decrease in supply. Hence the growth rate of land remains unchanged. This is illustrated in equation 3.5

$$g_T = \frac{\dot{T}_t}{T_t} = 0 \quad (5)$$

Land is frequently inhabited by man and used for a variety of purposes. Even with the increase in migration and the rise of cities, excessive land use has no impact on its size. But, when humans use natural resources on land excessively, it becomes depleted. Natural resources deplete overtime due to the activities of humans as resources are being used up and exploited beyond their regenerative capacity. The rapid depletion of natural resources is mostly accelerated by the expanding global population. According to Romer (1990), pollution caused by production activities and other environmental issues can be a major impediment to sustainability. In the case of exhaustible resources, annual depletion rate of natural capital such as energy resources and mineral resources is assumed to be negative because when these resources are used up, they cannot be gotten back as excess extraction of these resources reduces its availability for future generations. Annual rate of natural capital depletion can be positive if net forest resources such as trees can regrow and can be improved by effective fertilization. Hence the dynamics of natural capital as developed by D' Alessandro (2007) is denoted as

$$g_R = mR \left(\frac{R}{CT} - 1 \right) \left(I - \frac{R}{CC} \right) - F + W^V \quad (6)$$

Equation (6) illustrates the growth rate of the stock of natural resources, where m stands for the rate of resource regeneration, CC for the carrying capacity of the environment, CT for the extraction threshold, W for the investment in restoring degraded resources, and F for the quantity of resources that can be utilized for economic activity. The long-term feasibility of achieving equilibrium with the stock of natural resources is demonstrated by the dynamics of natural capital (Kornafel & Telega, 2020). The topic of environmental sustainability is covered in this aspect. The Hartwick and Solow model of weak sustainability, however, stipulates that the rents gotten from the sale of natural resources should be invested in enhancing manufactured capital (K) and human capital (H). In order to accumulate capital, households, firms and government saves (S) a constant fraction of their income (Y) in a closed economy ($C+I+G$). This gross savings (S_y) comprises of both private and public domestic saving. Hence, the dynamics of manufactured capital is expressed as

$$g_k = \frac{dk}{dt} = S_k Y_t - \delta k_t \quad (7)$$

From equation (7), g_k denotes the growth rate of manufactured capital where S_k denotes the fraction of income invested in manufactured capital to replace worn out capital (δk_t). As much as an economy strives to improve and expand its capital base, its human capital resource stands as an important part of the capital base. Romer (1990) added human capital to this model to depict how important investment in education is to the national output of an economy. The assumption of Romer (1990) on human capital is given as; $H_t = L(t) P(E)$. Where L denotes number of workers and $P(\bullet)$ is a function depicting years of education per worker. Labour is assumed to grow at an exogenous growth rate of n ($L_t = e^{nt}$). The quality of labour ($P > 0$) is improved by the quality of education and health services offered to the populace. Romer (1990) made the assumption that as a worker acquires more education, his human capital increases ($P'(\bullet) > 0$). This is because education equips individuals with the knowledge of sustainability. Education keeps communities and cities informed on how consumption patterns and lifestyle affects the environment. This would help individuals to curb their excessive consumption that negatively affects the environment. Hence, the dynamics of human capital is expressed as;

$$g_H = \frac{dH}{dt} = S_h Y_t - \delta k_t \quad (8)$$

Human capital accumulates based on the level of investment that has been made to the educational and health sectors. S_H denotes the income invested in human capital while δ represents the rate at which the quality of education and health care services depreciates in value due to lack of investment which affects the productivity of the labour force. In the steady state, national output (Y) total factor productivity (A), natural capital (R) and land (T) all grow at a constant rate (g). The steady state is based on the optimum level at which all factor inputs are sustained. To derive the steady state, we take logs of equation (2)

$$\ln Y_t = \ln A_t + \alpha \ln K_t + \beta \ln R_t + \gamma \ln T_t + (1 - \alpha - \beta - \gamma) \ln H_t \quad (9)$$

The action of each factor input on the balanced growth path is shown by the steady states. Capital per labor (K/L) and output per labor (Y/L) are expected to be constant across time on the balanced growth path. As a result, k_t , which is represented as per-capita income, is also constant across time. This is due to the fact that in the steady state, the manufactured capital determines the output (Y)/(K). More investment is utilized to replace worn-out capital (δ) on the balanced growth path. In this sense, the pace of increase of manufactured capital;

$$g_k = \frac{dk}{dt} = \left(\frac{S_k Y_t}{K_t} \right) \quad (10)$$

Equation 10 depicts the income per capita also known as the net savings rate. However, to examine the behavior of all factor inputs on the balanced growth path, the growth rates of each factor inputs is applied on equation 3.9

$$g_y = g + f_o + \alpha \left(\frac{S_k Y_t}{K_t} \right) + \beta g_R + \gamma g_T + (1 - \alpha - \beta - \gamma) g_H \quad (11)$$

Since savings is a paramount factor that influences the increase in output, the savings model helps to explain how the current generation is storing up wealth and preserving the environment for future generations. The savings model is derived by arranging the net savings rate to the right side, this becomes,

$$\left(\frac{S_k Y_t}{K_t} \right) = g + f_o + \alpha g_y + \beta g_R + \gamma g_T + (1 - \alpha - \beta - \gamma) g_H \quad (12)$$

From equation 12, $\left(\frac{S_k Y_t}{K_t} \right)$ represents environmental sustainability, g represents total factor productivity, f represents financial development O represents institutional quality, αg_y represents per capita income, βg_R represents natural resource rents and $(1 - \alpha - \beta - \gamma) g_H$ represents human development.

Model specification

In line with the theoretical framework, the relationship between, environmental sustainability, financial development and institutional quality has been presented. A set of control variables are included into the model. These variables are per capita income, natural resource rents, trade openness and foreign direct investment. Per-capita income is an important aspect of an economy that influences the environment. As a tool for assessing a population's level of living and quality of life, per-capita income calculates the average annual income per person in a nation. Per-capita income is included into the model to evaluate how the income of each individual has contributed to the environmental development of the economy. For a resource dependent nation like Nigeria, the level to which Nigeria depends on its natural resources to generate income, will depict the level to which it's level of environmental sustainability is being undermined (Koirala & Pradhan, 2020). Natural resource rents is included in this model to reveal how well natural resources have been utilised and sustained to build the economy. Trade openness helps in achieving environmental sustainability through its capacity to boost a country's means of

generating wealth. It facilitates environmental development as it aids in the allocation of scarce resources and grants easy access to advanced technologies that promote environmental preservation (Alshery & Belloumi, 2020). Trade openness is added to this model to show the extent to which the economy is open to international trade and how trade has contributed to the sustainability of the environment. The inflow of foreign investment can to a large extent affect the environment. The inflow of green technology into an economy can enhance the environment. However, foreign direct investment creates an avenue where obsolete or advanced technology can be made available to individuals and firms which can affect the demand and use of energy in an economy.

$$ES = F(FD, INST, PCI, NRR, TO, FDI) \quad (13)$$

The use of polluting equipment from foreign and indigenous companies can deteriorate the environment but the use of green technology can improve environmental protection. Foreign direct investment is added to this model to show how foreign direct investment has affected environmental quality in the economy, Equation 13 can be expressed in econometric form as follows;

$$InES_T = \alpha_0 + \beta_1 InFD_t + \lambda_2 InINST_t + \delta_3 InPCI_t + \phi_4 InNRR_t + \eta_5 InTO_t + \varphi_6 InFDI_t + \varepsilon_t \quad (14)$$

ES stands for environmental sustainability which is the dependent variable while α_0 is the intercept which represents the difference between the mean of ES_T and the product of the slope and mean of $FD, INST, PCI, NRR, TO$ and FDI . While $\beta_1, \lambda_2, \delta_3, \phi_4, \eta_5, \varphi_6$ and ε_t are slope coefficients that captures the influence of financial development, institutional quality, per-capita income, natural resource rents, trade openness and foreign direct investment on environmental sustainability in time t . Financial development is captured using financial development index, institutional quality is measured using institutional quality index, per-capita income is measured as GDP per capita, trade openness is measured using the ratio of total exports and imports to nominal GDP, natural resource rents is measured using natural resource rents and foreign direct investment is measured using Foreign direct investment, net inflows (BoP, current US\$). ε_t denotes the disturbance term which helps to address other variables outside the model that can influence the outcome of the dependent variable. All variables are transformed into their logs to address their size differences and interpret their elasticity. Subscript t depicts the number of years in the study which would be analysed from 1986 to 2020.

Estimation strategy

To achieve this study objective, threshold regression is applied. Threshold models are applied help to explain an underlying process that causes an economy to encounter changes. These changes are explained by a parameter from a threshold model. This parameter is called the threshold parameter (Madni & Wu, 2021). Threshold extends the linear regression to allow coefficients to differ across regions. Those regions are identified by a threshold variable being above or below a threshold value. These regions are also called regimes. By adding a threshold, the linear regression is expanded to include regime variations in the coefficients.

Specifying the linear regression for this study, is shown as;

$$InES_T = \alpha_0 + \beta_1 InFD_t + \lambda_2 InINST_t + \delta_3 InPCI_t + \phi_4 InNRR_t + \eta_5 InTO_t + \varphi_6 InFDI_t + \varepsilon_t \quad (15)$$

To obtain the threshold level of institutional quality, the work of Wu and Madni (2021) is adopted

$$InES_T = \begin{cases} \alpha_0^1 + \beta_1^1 InFD_t + \varepsilon_t, & INS_t < T \\ \alpha_0^2 + \beta_1^2 InFD_t + \varepsilon_t, & INS_t \geq T \end{cases} \quad (16)$$

In equation 3.21, institutional quality is used as the threshold variable. $INST_t < T$ denotes the first regime where institutional quality is below the threshold, while $INST_t \geq T$ indicates the second regime where institutional quality is above the threshold as the sample is being splitted into 2 regimes. The discreet threshold technique is used to determine the number of thresholds. T represents the threshold parameter as β_1^1 indicates low regime for the first sample while β_1^2 indicates high regime for the second sample split

Data, Measurements and Sources

This study used annual time series data from 1986 to 2020, to evaluate the effect of financial development and institutional quality on environmental sustainability in Nigeria. The study period covered the SAP and Post-SAP periods in Nigeria as well as the period when the 17 sustainable development goals were made to help global economies implement sustainable development and achieve environmental sustainability. Adjusted net savings is measured as net savings, plus current expenditure on education, minus rents from depletion of natural capital and damages from carbon dioxide emissions which is divided by gross national income at market prices. Adjusted net savings overcomes the challenge of using carbon emission because it incorporates the three pillars of sustainability. These three pillars are; the economic pillars, the social pillars and the environmental pillars of sustainability. However, Previous empirical results hypothesized that few variables can influence environmental sustainability. For this study, environmental sustainability is controlled along with per-capita income, natural resource rents, trade openness to create a robust and realistic estimation. To tackle omitted variable bias, these control variables are added because they are connected with the changes that can likely persist between financial development, institutional quality and environmental sustainability. This study used the Financial Development index to assess financial development in accordance with recent literature (Svirydzenka, 2016; Khan, 2019; Liu et al., 2019; Dada et al., 2022). This index measures the accessibility, depth, and efficiency of financial markets and financial institutions. The financial institution (FI) index and the financial market (FM) index make up this proxy, which was produced by the International Monetary Fund (2019). The indexes here vary from 0 to 1. While 0 depicts weak financial sector, 1 depicts strong financial sector. The control variables in this study such as per-capita income, foreign direct investment, natural resource rents and trade openness were all sourced from World Development Indicators (2022). Institutional quality is measured using four institutional quality index from the International Country Risk Guide. This institutional index are, control of corruption, law and order, government stability and bureaucratic quality. These four sub-indexes are chosen because of its peculiarity to the Nigerian economy due to its effect on Nigeria's institutional system (Fabemi, 2018; Olaniyi & Oladji, 2020). Control of corruption and law and order are scaled from 0-6, government stability is scaled from 0 to 12, while bureaucratic quality is scaled from 0 to 4. Following the works of Olaniyi & Oladji (2020), the four institutional indicators are re-scaled from 0 to 10.

Results and discussions

Descriptive statistics

The results of the descriptive statistics for this study, is shown in Table 1. It is important to know the behaviour of a series before carrying out further analysis. To examine the behavior of the series, descriptive statistics is used to

describe the data set of adjusted net savings, ecological footprint, institutional quality, financial development and foreign direct investment using mean, median, standard deviation, minimum, maximum values and Jarque Bera statistics. Table 1 show that all the series display some level of consistency as their mean and median values fall within their minimum and the maximum values. The average value of adjusted net savings for the sample period stands at 20.1% which is quite lower than 50% on a percentage scale. This depicts the high rate of natural resource depletion in Nigeria which has reduced the availability of adequate resources for future generations. The best environmental performance the Nigerian economy ever had was in 1989 with a 44.8% value in adjusted net savings and the lowest performance in 2016 dropping to 4.55% in value over the 35 years of observation.

Financial development index for Nigeria shows a value of 0.18 which depicts a weak financial system. This suggests that the financial system in Nigeria is crippled by deficiencies in financial operations and structural weakness in the financial markets. In 2008, Nigeria experienced its highest level of financial development with a value of 0.27 and its lowest level of development in 1997 with a value of 0.11. The standard deviation for financial development is quite low compared to its mean. This means that the financial sector in Nigeria has not recorded significant changes in its level of development across the years in the sampled period.

The results for Nigeria's institutional quality is 3.72 which is below the average on the scale of 0-10. In essence, the quality of institutions in Nigeria are poor and less productive in respect to its control of corruption, law and order, bureaucratic quality and government stability. Nonetheless, the highest level of institutional development in the Nigerian economy was recorded in 1996 with an institutional performance of 4.8 and its lowest level of institutional development in 1986 with an institutional performance of 2.65.

Table 1: Descriptive statistics

Var	Unit of measurement	Mean	Median	Max	Min	Std.dev	J.B	Prob	Obs
ANS	ANS (% of GNI)	20.108	18.142	44.816	4.5575	12.176	2.70	0.25	35
FD	FD index scale (0-1)	0.1873	0.1815	0.2730	0.1188	0.0388	0.84	0.65	35
INS	INS index scale (1-10)	3.7200	3.5675	4.8950	2.6575	0.5135	0.77	0.68	35
FDI	FDI net inflows (Bop, Us\$)	2.8E+9	1.8E+9	8.8E+9	1.9E+8	2.6E+9	5.96	0.06	35
PCI	GDP per-capita (current, Us\$)	1317.6	786.80	3200.9	270.02	922.82	3.74	0.15	35
NRR	Total NRR (% of GDP)	15.329	15.645	31.770	4.7909	6.2374	0.62	0.73	35
TOP	Trade (% of GDP)	34.694	34.457	53.277	9.1358	0.6512	1.02	0.59	35

Source: Author's computation (2023)

It is also displayed from the results that the standard deviation of institutional quality is lower than its average value. This connotes that Nigeria which is challenged with poor quality of institutions, has not experienced a wide variety of changes in its institutional system throughout the study period.

For the control variables, FDI show a net inflow of investment worth \$2.8billion dollars in respect to Nigeria's balance of payment. This shows that the inflow of equity capital, reinvestment of earnings, long term and short-term capital from foreigners into Nigeria throughout the period observed, is quite high. As a result, the highest inflow of foreign investment into Nigeria was noticed in 2011, with a net inflow of \$8.8billion dollars. According to World investment report (2012), Nigeria was Africa's top destination for foreign direct investment in 2011, drawing in foreign investors from Europe and the United States. The lowest inflow of foreign direct investment into Nigeria was discovered in 1986 with a net-worth of \$193million. The value of standard deviation for Foreign direct

investment is lower than its average value. This denotes that the Nigerian economy have not experienced large changes in its inflow of investment in the years observed in the study.

The average per capita income for Nigeria stands at \$1,317. This implies that Nigeria is a lower-middle-income country from sub-Saharan Africa as classified by the World Bank. The Nigerian economy generated its highest level of per capita income in 2014 with a value of \$3,200 and its lowest in 1993 having a value of \$270. Nigeria which is tagged as a low income economy, has noticed little changes in its levels of per-capita income from 1986 to 2020. Besides, the total natural resource rents from the sale of oil, natural gas, coal and mineral resources in Nigeria only accounts for 15% of Nigeria's GDP. Natural resource rents contributed immensely to the GDP of the Nigerian economy in 1993, accounting for 31% of Nigeria's GDP. However, in 2016, natural resource rents drop to its lowest level of economic value only accounting for 4.7% of Nigeria GDP. The results of for natural resource show that its average value is higher than its standard deviation. This implies that there have been slight differences in the contribution of natural resource rents to Nigeria's GDP throughout the years observed in the study.

The average sum of Nigeria's trade openness throughout the 35 years examined, is 34.6%. This indicates that the openness of the Nigerian economy to trade relationships is below the average as the sum of Nigeria's imports and exports accounted for less than 50% of Nigeria's GDP. Nigeria's trade relationships with other countries in the world improved the gross domestic product of the Nigerian economy by 53% in 2011. This was the highest contribution of Nigeria's trade openness to GDP which occurred as a result of the high inflow of foreign direct investment into Nigeria in 2011. However, Nigeria's trade openness contributed minimally to the GDP in 1986 by increasing the market value of goods and services produced in Nigeria by 9.1%. Furthermore, the standard deviation of trade openness is lower than its mean value. This denotes that few changes have been noticed in the levels of import and export of goods and services in and out of Nigeria from 1986 to 2020. The results of the Jarque Bera statistics reveal that all the variables are normally distributed as they are all above the 5% level of significance.

Correlation matrix

The results of the correlation matrix between the explanatory variables are shown in Table 2 using Pearson correlation coefficient. Correlation matrix is a statistical tool used to examine the degree of association between two variables. It is also used to check for multicollinearity amongst variables. The problem of multicollinearity exist when two or more predictor variables in a multiple regression model are highly correlated. Following the works of Abaidoo and Agyapong (2023), the threshold limit of 85% for the correlation coefficients was used. From the results it can be seen that there are no issues of multicollinearity in the results as none of the correlation coefficient is above the threshold limit of 0.85. This suggests that multicollinearity is not present among the explanatory variables in the model.

Unit root test

The unit root test of the response and predictor variables are displayed in Table 3. It is important to examine the stationary properties of a series before further analysis is conducted. This is because a pre-estimation test will help to ascertain which methodology is appropriate to estimate the series. Stationarity test is also important because using time series data that are non- stationary, will lead to spurious result. One basic disadvantage of a spurious result is that it cannot be used for prediction, forecasting and hypothesis testing. In other words, a spurious result is completely unreliable and can lead to wrong conclusions. To prevent this statistical error, unit root test is performed on the series in the study. Table 3 shows the unit root test on the variables of the study using Dickey Fuller Generalized Least Square (Elliot, Rothenberg and stock, 1996) and the Ng and Perron test (Ng & Perron, 2001).

Table 2: Correlation matrix

Var	FD	INS	FDI	NRR	PCI	TOP
FD	1.0000					
INS	-0.3680	1.0000				
FDI	0.6453	-0.2007	1.0000			
NRR	-0.5202	0.5689	-0.0384	1.0000		
PCI	0.8325	-0.3647	0.7335	-0.4491	1.0000	
TOP	-0.0260	0.4654	0.2645	0.4729	-0.0417	1.0000

Source: Author's computation (2023)

Table 3: Unit root test results

Unit root test (individual intercept)						
	DF-GLS		Ng and Perron			
Variable	Levels	1st diff	Order	Levels	1st diff	Order
ANS	-0.7993	-9.9726***	I(1)	0.4847	0.2026**	I(1)
EFP	-0.5812	-9.0946***	I(1)	0.9095	0.1915**	I(1)
FD	-1.1441	-4.2747***	I(1)	0.3836	0.1828**	I(1)
INS	-1.4375	-4.1497***	I(1)	0.4544	0.1810**	I(1)
PCI	-0.2900	-4.5855***	I(1)	0.7289	0.1729**	I(1)
NRR	-1.2355	-4.5900***	I(1)	0.3660	0.1748**	I(1)
TOP	-1.7851*	—	I(0)	0.3575	0.1636***	I(1)
FDI	-1.6171	-2.7016***	I(1)	0.3360	0.2531*	I(1)
Level of sign.						
CRITICAL VALUES						
1%	-2.6347	-2.6347		0.1740	0.1740	
5%	-1.9510	-1.9510		0.2369	0.2369	
10%	-1.6109	-1.6109		0.2750	0.2750	

Note: ***, **, * represents the 1%, 5% and 10% of significance respectively

Source: Author's computation (2023)

The DF-GLS and Ng and Perron unit root tests was selected for this study because the conventional Augmented Dickey Fuller (ADF) and Phillip Perron (PP) unit root test are susceptible to power distortions with processes that possesses low moving average (Arltova & Fedorova, 2016) While DF-GLS tests is the modified version of the ADF

tests, Ng and Perron is the modified version of the Phillip-Perron tests. ADF and PP test have lower power in the case of a root process that is close to a unit root. That is to say, their low power capacity reduces the validity and reliability of their tests which can lead to wrong conclusions. However, the DF-GLS and NG and Perron tests are classified as efficient unit root test because they exhibit higher power compared to ADF and PP test. For robustness sake, the study employed both intercept and intercept and trend options. The DF-GLS results with intercept show that adjusted net savings, ecological footprint, financial development, per-capita income, institutional quality, natural resource rents and foreign direct investments are non-stationary at levels I(0) but stationary at first difference I(1). This suggests that the mean, variance, and covariance of their series is not constant overtime and also that the series are time variant.

Table 4 : Unit root test (Individual intercept and trend)

Variables	DF-GLS			Ng and Perron		
	Levels	1st diff	Order	Levels	1st diff	Order
ANS	-4.8135***	_____	I(0)	0.1712*	_____	I(0)
EFP	-1.0334	-9.7106***	I(1)	0.3674	0.1991***	I(1)
FD	-3.0038*	_____	I(0)	0.1773*	_____	I(0)
INS	-1.9363	-4.5917***	I(1)	0.3833	0.1778*	I(1)
PCI	-1.2523	-4.9138***	I(1)	0.3956	0.1713*	I(1)
NRR	-3.3067**	_____	I(0)	0.2110*	_____	I(0)
TOP	-2.5377	-5.8335***	I(1)	0.2385	0.1735*	I(1)
FDI	-2.0752	-8.1787***	I(1)	0.2001	0.1833*	I(1)
Level of sign.	CRITICAL VALUES					
1%	-3.7700	-3.7700		0.1400	0.1400	
5%	-3.1900	-3.1900		0.1700	0.1700	
10%	-2.8900	-2.8900		0.2300	0.2300	

Note: ***, **, * represents the 1%, 5% and 10% of significance respectively

Source: Author's computation (2023)

Table 3 and Table 4, revealed that there are mixed order of integration in the series. Since the variables are a mixture of I(1) and I(0), a threshold autoregression model can be used

The Threshold level of institutional quality in the link between financial development and environmental sustainability in Nigeria.

The outcome of the threshold analysis is presented in Table 5. Threshold regression is a linear regression that shows regime variations in the coefficients, when a threshold variable is above or below a threshold parameter. For this study, a single threshold parameter is considered which display two regimes. In estimating the threshold, adjusted net savings is used as the pivotal variable which measures environmental sustainability while institutional quality is the threshold variable and financial development is the dependent variable. The first regimes show when institutional quality performs below the threshold parameter while the second regime show when institutional quality perform at or above the threshold limit. Discreet threshold technique was applied to arrive at the threshold value of 4.32.

The basic reason why two regimes are chosen for this study, is to ascertain the regime were institutional quality in Nigeria influenced financial development to improve environmental sustainability and also to ascertain the regime

were institutional quality influenced financial development to reduce environmental sustainability in Nigeria in the 35 years of the study. The results in Table 5 show that when institutional quality is below the threshold value of 4.32 in the first regime, financial development in Nigeria exert a negative and insignificant effect on adjusted net savings. However, when institutional quality is above the threshold value of 4.32 in the second regime, financial development exerts a positive and significant effect on adjusted net savings. In other words, when institutional quality is below the threshold, financial development reduces environmental sustainability by 0.08%. However, when institutional quality is above the threshold, financial development increases environmental sustainability by 4.52%. This affirms that the financial sector in Nigeria can help in fostering environmental sustainability when sound institutions are in place to ensure that environmental standards are being followed. Hence, below the threshold value of 4.32, financial development impedes environment sustainability. Nigeria's environmental performance may have been impacted and decreased by institutional quality, through her poor bureaucracy, and corruption, which is a significant but often overlooked factor. In other words, Institutional failure in Nigeria has resulted in the financial sector's inefficiencies as well as the deterioration of the ecosystems. This indicates that the institutional framework in Nigeria has to improve beyond the threshold level before it can stimulate the financial sector to promote environmental sustainability. more so, below the threshold level of 4.32, there is a high tendency for institutions in Nigeria to give room for corrupt, illegal and unsustainable environmental practices that is detrimental to environmental development.

On the average, Nigeria's quality of institutions has performed below the threshold level. As shown in Table 1, the average value of Nigeria's institutional quality index which is 3.72, is less than the threshold value of 4.32. Hence, the Nigerian economy has operated below the threshold value for the 35-year period that is covered in the study. The International Country Risk Guide data used for this study reveal that Nigeria was above the threshold value in 1992, 1993, 1994, 1995, 1996 and 1997. Notwithstanding, the best institutional performance was observed in 1996, while the lowest level of institutional performance was recorded in 1986 which was displayed in Table 1. This indicate that there have been a high level of institutional inconsistency and inefficiency in Nigeria.

Table 5 : Threshold analysis

Dependent variable : Adjusted Net Savings						
Panel A : Estimates						
	Regime 1 (INS < 4.32 (29 Obs)			Regime 2 (INS \geq 4.32 (6 Obs)		
Var	Coef	T-stat	prob	Coef	T-stat	Prob
LFIN	- 0.0817	-0.1729	0.8640	4.5240**	2.4005	0.0235
C	6.8725	2.4358	0.0088	14.794	4.2925	0.0002
Non-threshold variables						
Var	Coef	Std.error	T- stat			Prob
LFDI	0.0572	0.1474		0.3833		0.1778*
LPCI	- 0.7512	0.2496		0.3956		0.1713*
LNRR	0.7835	0.2244		3.4907		0.0017
LTOP	- 0.6255	0.2220		-2.8167		0.1735*
Panel B : Diagnostic test						
Jarque Bera		0.5410				
Serial correlation		0.6902				
Heteroscedasticity		0.4050				
Ramsey rest test		0.1988				

Dependent variable : Adjusted Net Savings	
Global Scientific Research	57

Panel A : Estimates						
Var	Regime 1 (INS < 4.32 (29 Obs)			Regime 2 (INS \geq 4.32 (6 Obs)		
	Coef	T-stat	prob	Coef	T-stat	Prob
LFIN	- 0.0817	-0.1729	0.8640	4.5240**	2.4005	0.0235
C	6.8725	2.4358	0.0088	14.794	4.2925	0.0002
Non-threshold variables						
Var	Coef	Std.error	T- stat		Prob	
LFDI	0.0572	0.1474			0.3833	0.1778*
LPCI	- 0.7512	0.2496			0.3956	0.1713*
LNRR	0.7835	0.2244			3.4907	0.0017
LTOP	- 0.6255	0.2220			-2.8167	0.1735*
Panel B : Diagnostic test						
Jarque Bera		0.5410				
Serial correlation		0.6902				
Heteroscedasticity		0.4050				
Ramsey rest test		0.1988				

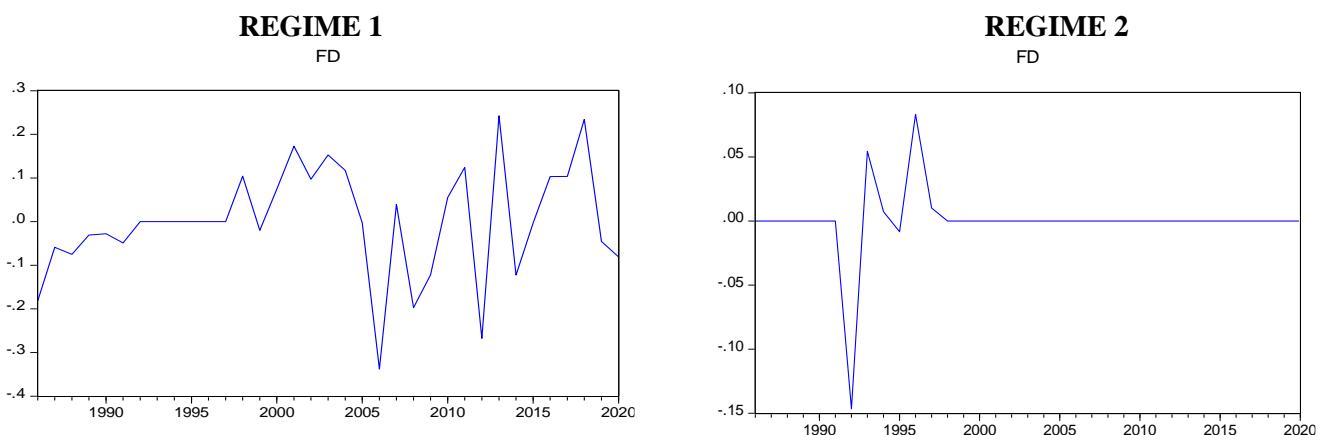
Dependent variable : Adjusted Net Savings						
Panel A : Estimates						
Var	Regime 1 (INS < 4.32 (29 Obs)			Regime 2 (INS \geq 4.32 (6 Obs)		
	Coef	T-stat	prob	Coef	T-stat	Prob
LFD	- 0.0817	-0.1729	0.8640	4.5240**	2.4005	0.0235
C	6.8725	2.4358	0.0088	14.794	4.2925	0.0002
Non-threshold variables						
Var	Coef	Std.error	T- stat		Prob	
LFDI	0.0572	0.1474			0.3833	0.1778*
LPCI	- 0.7512	0.2496			0.3956	0.1713*
LNRR	0.7835	0.2244			3.4907	0.0017
LTOP	- 0.6255	0.2220			-2.8167	0.1735*
Panel B : Diagnostic test						
Jarque Bera		0.5410				
Serial correlation		0.6902				
Heteroscedasticity		0.4050				
Ramsey rest test		0.1988				

Note : ** p < 0.05, ***p < 0.01, and *p < 0.1 denotes 1%, 5% and 10% level of significance.

Source: Author's computation (2023)

Out of the 35 years observed, Nigeria operated below the threshold value for 29 years, showing that the institutional structure in Nigeria has been indeed weak and less productive overtime. This is why below the threshold level, financial development reduces environmental sustainability since institutions are weak to impose the norms of environmental sustainability on the financial sector, unregulated financial markets in Nigeria divert loans to highly polluting companies that deteriorate the environment.

The Nigerian economy has been more focused on improving economic growth without considering the side effects of these economic expansion on environmental conservation. The increase in financial services and access to credit is having environmental and societal consequences in Nigeria. The demand for transportation increases along with the use of energy when individuals and businesses have easy access to credit.


The preliminary stages of financial development are the stages of development in the financial sector that mostly considers financial deepening far more than environmental protection. This is the case of the Nigerian financial system as Yinusa (2020) recounts that the Nigerian financial sector is still developing and is not fully strengthened. Institutional quality plays an important role in increasing the environmental performance of the financial sector in Nigeria by incorporating environmental reforms into the financial system to lessen the harmful effects of the increasing demand for energy by firms in Nigeria. Sibanda et al. (2023) argued that the level of institutional quality operating in African countries has not been effective enough to tackle the issues of carbon emission and environmental pollution like the developed countries. Institutional quality is the backbone of environmental performance in any economy and its efficiency is of utmost relevance in meeting the conditions of sustainability in a country (Madni & Wu, 2021). High quality institutions ensure that effective environmental policies are effected and implemented (Federal Ministry of Environment Nigeria , 2019). Nevertheless, a lot of economies are faced with environmental challenges due to economic and industrial expansion which are caused by development in the financial sector (Ibrahim & law, 2015).

Financial markets and financial institutions in Nigeria increase environmental pollution when institutions operate at a low level of productivity. This can be seen in the years when institutional quality in Nigeria performed below the threshold which was between 1986 to 1991 and 1998 to 2020. If institutions in Nigeria do not perform above the threshold level, financial markets and financial institutions will degrade the environment and worsen environmental issues in Nigeria. This is because institutional factors such as control of corruption, rule of law and bureaucratic quality to a large extent determines how the financial sector impacts the environment. Abid (2016) argued that institutional quality can significantly reduce carbon-dioxide and curb environmental pollution. The findings of this study are in line with that of Madni and Wu (2021) on OBOR economies. The authors affirm that when institutional quality performs beyond the threshold level, Carbon emissions would be significantly reduced and environmental quality would be preserved even in the face of rising industrialization.

The results of the non- threshold variables show that per capita income and trade openness have a negative and significant effect on environmental sustainability. In other words, an increase in per-capita income will result to a 0.7% decrease in environmental sustainability. Also, a 1% increase in trade openness will lead to a 0.6% decrease in environmental sustainability. This means that an increase in per-capita income will worsen environmental sustainability in Nigeria. This exemplifies that trade relationship has also exposed the Nigerian economy to obsolete technology as well as a result of dumping in the attempt to acquire cheap production equipment that are highly substandard. Re-affirming this outcome, Solarin et al (2017) discovered that trade openness reduces environmental quality in Ghana. On the other hand, natural resource rents show a positive and significant effect on environmental sustainability. A 1% increase in natural resource rents will lead to a 0.78% increase in environmental sustainability. Sibanda et al (2023) reckoned that natural resource rents have helped to improve the economy of developing economies.

To examine the reliability of the results in the threshold auregression, a diagnostic test was obtained which is shown in panel B of Table 5. In the test, the model showed a normal distribution with a probability value of 0.54. This means that there are no structural issues in the model. Also, the results revealed that the residuals are homoscedastic and are free from serial correlation issues. This was determined using the Breush Pagan and the serial correlation LM test. The Ramsey reset test also indicates that the tests are well specified.

Figure 3 and 4 is the graphical presentation of the results in Table 5, showing the development of the financial sector in regime 1 and 2. The first regime show that the financial sector had a negative effect on environmental sustainability as the graph shows a break year in 2006 were institutional quality performed below the threshold level of 4.32 having a value of 3.73 as observed by the ICRG data in 2006. Low regime of institutional quality in Nigeria is displayed in the diagram from 2006 to 2020. While the second regime show a break year in 1992 where the institutional quality in Nigeria performed at the threshold level having a value of 4.32. This could be as result of the environmental laws made in 1992. The environmental impact assessment Act was established in 1992 to make the public and private sector of the economy not to authorize projects without considering its effect on the environments. Hence, the level at which institutional quality stimulates the financial sector without neglecting the relevance of environmental development is crucial for any economy.

Figure 3: Financial development (INS < 4.32 (29(Obs)

Figure 4: Financial development (INS > 4.32 (6 Obs)

Conclusion

This empirical study examined the threshold level of institutional quality in the link between financial development and environmental sustainability. Specifically, this study evaluates the threshold level of institutional quality in the nexus between financial development and environmental sustainability in Nigeria from 1986 to 2020 using the threshold autoregression model. The outcome of the findings revealed that when institutional quality is below the threshold, financial development decreases environmental sustainability. Trade openness and per-capita income decreases environmental sustainability in Nigeria while foreign direct investment and natural resource rents increases environmental sustainability in Nigeria. Institutional quality enables the financial sector to improve environmental sustainability in Nigeria. Institutional quality needs to be enhanced in other to strengthen the environmental performance of the financial sector in Nigeria. The institutional weakness in the institutional framework of the Nigerian economy needs to be tackled and removed to ensure that environmental standards are met.

This study provides some important policy recommendation. First, The Nigerian government should work towards achieving a low carbon economy in Nigeria. To achieve this, policy makers should regulate the environmental practices of both individuals and firms. In addition, environmental agencies should be involved in carrying out random checks on industries and on residential and commercial areas to discipline individuals or companies that

flout environmental orders. The monetary authority should employ regulatory measures by carrying out random checks on the activities of financial markets to ensure that the financial sector direct financial institutions to channel their loans to industries that use cleaner technologies. Hence, it is important that institutional credibility and transparency is enhanced to effect the needed change in increasing environmental preservation. Hence, the institutional body in Nigeria should ensure that institutional quality is improved beyond the threshold level as deliberate efforts should be made towards improving bureaucratic quality and promoting law and order.

Declarations

Availability of data: Data are readily available upon request.

Conflict of interests: The author declares that there is no conflict of interests

Funding: The author did not receive any financial assistance from any agency.

Acknowledgement: The author is grateful to the lecturers in the department of economics in Obafemi Awolowo university ile-ife. The author is also grateful to Dr. Titus Ayobami Ojeyinka for his immense input to this research work.

Authors' Contribution: Nyonnoh Grace Oje is solely responsible for determining and developing the introduction, literature, methodology, analysis and the conclusion of the study.

References

Abaidoo, R., & Agyapong, E. K. (2023). Environmental sustainability risk, institutional effectiveness and urbanization. *Energy & Environment*, 34(8), 3055-3079.

Abid, M. (2016). Impact of economic, financial, and institutional factors on CO2 emissions: Evidence from Sub-Saharan Africa economies. *Util. Policy* 41, 85–94. <https://doi.org/10.1016/j.jup.2016.06.009>

Acheampong, A. O. (2019). Modelling for insight: Does financial development improve environmental quality? *Energy Economics*, 83, 156–179. <https://doi.org/10.1016/j.eneco.2019.06.025>

Adams, S., & Klobodu, E. (2018). Financial development and environmental degradation: Does political regime matter? *Journal of Cleaner production*, 197, 1472–1479. <https://doi.org/10.1016/j.jclepro.2018.06.252>

Adebayo, T. S., Adedoyin, F. F., & Kirikkaleli, D. (2021). Toward a sustainable environment: nexus between consumption-based carbon emissions, economic growth, renewable energy and technological innovation in Brazil. *Environmental Science and Pollution Research*, 1–11

Alshehry, A., & Belloumi, M. (2023). The Symmetric and Asymmetric Impacts of Energy Consumption and Economic Growth on Environmental Sustainability. *Sustainability*, 16(1), 205.

Arltová, M., & Fedorová, D. (2016). Selection of Unit Root Test on the Basis of Length of the Time Series and Value of AR (1) Parameter. *Statistika: Statistics & Economy Journal*, 96(3), 47-64. <https://www.researchgate.net/publication/308972405>

Baloch, M. A., Ozturk, I., Bekun, F. V., & Khan, D. (2021). Modeling the dynamic linkage between financial development, energy innovation, and environmental quality: does globalization matter?. *Business Strategy and the Environment*, 30(1), 176-184

Corruption perception index, (2022). Transparency international. <http://www.transparency.org/cpi>

D'Alessandro, S. (2007). Non-linear dynamics of population and natural resources: the emergence of different patterns of development. *Ecological Economics*, 62, 473-48.

Dada, J. T., Ajide, F. M., Arnaut, M., & Adams, A. (2022). On the shadow economy-environmental sustainability nexus in Africa: the (ir)relevance of financial development. *International Journal of Sustainable Development & World Ecology*, DOI: 10.1080/13504509.2022.2115576

Dasgupta, P., Eastwood, R., & Heal, G. (1978). Resource management in a trading economy. *The Quarterly Journal of Economics*, 92(2), 297-306.

Effiom, L., & Uche, E. (2021). Financial development and environmental sustainability in Nigeria: fresh insights from multiple threshold nonlinear ARDL model", *Environmental Science and Pollution Research*, 2021, 28, 39524-39539.

Elliott, G., Rothenberg, T., & Stock, J. (1996). Efficient tests for an autoregressive unit root. *Econometrica* 64(4), 813. <https://doi.org/10.2307/2171846>

Fagbemi, F., & Ajibike, J. O. (2018). Institutional Quality and Financial Sector Development: Empirical Evidence from Nigeria. *American Journal of Business and Management*, 7(1), 1-13. DOI: 10.11634/216796061807919.

Federal Ministry of Environment Nigeria (2019). About the Department of Climate Change. Department of Climate Change. N.p., 2019. Web.

Grippa, P., Schmittmann, J., & Suntheim, F. (2019). The economics of climate and financial risk. *Finance & Development* 56(4), 1-56.

Gyamfi, M. N., Bokpin, A. G., Anthony, Q. Q., & Charles, G. A. (2020). Environmental sustainability and financial development in Africa; Does institutional quality play a role?. *Development studies research* 2020, 7, 93-118.

Hartwick, J. M. (1977). Intergenerational Equity and the Investing of Rents from Exhaustible Resources. *The American Economic Review*, 67(5), 972-974.

Hassan, S.T., Danish, Khan, S.U.D., Xia, E., & Fatima, H. (2020). Role of institutions in correcting 26 environmental pollution: An empirical investigation. *Sustain. Cities Soc.* 53, 101901.

Hunjra, A. I., Tayachi, T., Chani, M. I., Verhoeven, P., & Mehmood, A. (2020). The Moderating Effect of Institutional Quality on the Financial Development and Environmental Quality Nexus. *Sustainability* 2020, 12, 6-13. <http://doi:10.3390/su12093805>

Ibrahim, M. H., & Law, S.H. (2012). Institutional quality and CO2 emission—Trade relations: Evidence from Sub-Saharan Africa. *S. Afr. J. Econ.* 2016, 84, 323–340.

Ifere, B. N., & Abim, E. D. (2019). Development and environmental sustainability in Nigeria: An African perspective. *Journal of human theory and praxis* 2019, 2(1), 43-52.

IMF. (2019) International Monetary Fund, International Monetary Fund data explored. <http://data.imf.org/?sk=F8032E80-B36C-43B1-AC26-493C5B1CD33>

Jianguo, D., Ali, K., Alnori, F., & Ullah, S. (2022). The nexus of financial development, technological innovation, institutional quality, and environmental quality from OECD countries. *Environmental science and pollution research*, 2022, 29, 58179-58200

Kanu, C., Ogbækirkigwe, C., Roseline, O., Nwekw, C., Ugwuoke, C., & Gabriel, I. (2021). Green Banking Awareness, Challenges and Sustainability in Nigeria, *International Journal of Mechanical Engineering and Technology* 2020, 11(3), 30-54.

Khan, H., & Weili, L., Khan. I. (2022). The role of financial development and institutional quality in environmental sustainability: panel data evidence from the BRI countries. *Environmental Science and Pollution Research* <https://doi.org/10.1007/s11356-022-21697-7>

Kornafel, M., & Telega, I. (2020). Dynamics of natural capital in neoclassical growth model. *International Journal of Sustainable Economy*, 12(1), 1-24.

Kousar, S., Abbas, S., Yaseen, M., Mayo, Z. A., Zainab, M., Abbas, S., Mahmood, M. J., & Rasa, H. (2020). Impact assessment of socioeconomic factors on dimensions of environmental degradation in Pakistan. *SN Appl. Sci.* 2020, 2, 468.

Kumbaroglu, G., Karali, N., & Arıkan Y (2008). Carbon emission, Gross Domestic product and RET: an aggregate economic equilibrium analysis for Turkey. *Energy Policy*, 36(7), 2694–2708

Li, X., Xiao, L., Tian, C., Zhu, B., & Chevallier, J. (2022). Impacts of the ecological footprint on sustainable development: Evidence from China. *Journal of Cleaner Production*, 352, 131472

Liu, H., Islam, M. A., Khan, M.A., Ismail, H., & Pervaiz. K. (2020). Does financial deepening attract foreign direct investment? Fresh evidence from panel threshold analysis, *Research in International Business and Finance*. doi: <https://doi.org/10.1016/j.ribaf.2020.101198>

Madni, G. R., & Wu, Q. (2021). Environmental protection in selected one belt one road economies through institutional quality: Prospering transportation and industrialization. *PLoS ONE* 16(1): e0240851. <https://doi.org/10.1371/journal>.

Ng, S., & Perron, P. (2001). “Lag Length Selection and the Construction of Unit Root Tests with Good Size and Power,” *Econometrica*, 69, 1519-1554.

Ogar, J. N., & Samuel, A. B. (2019). African Environmental Ethics. *RAIS Journal for Social Sciences* 2019, 3(1), 71-81.

Ojong, K. A. (2018). “environmental Sustainability in Nigeria: Challenges and prospects”. *5 th National Conference of Academic Staff Union of Polytechnics (ASUP)*, 4th – 7 th September 2018. 17-25.

Olaniyi, C. O., & Oladeji, S. I. (2021). Moderating the effect of institutional quality on the finance–growth nexus: insights from West African countries. *Economic Change and Restructuring*, 54, 43-74

Omri, A., Daly, S., Rault, C., & Chaibi, A. (2015.) Financial development, environmental quality, trade and economic growth: what causes what in MENA countries. *Energy Economics* 48, 242–252

Ozturk, I., & Acaravci, A. (2013) The long-run and causal analysis of energy, growth, openness and financial development on carbon emissions in Turkey. *Energy Economics* 3, 262–267

Rizk, R., & Slimane, M. B. (2018). Modelling the relationship between poverty, environment, and institutions: a panel data study. *Environmental Science and Pollution Research* 25(31), 31459–31473

Romer, P. M. (1990). Endogenous Technological Change. *The Journal of Political Economy*, 98, 71-102.

Rjoub, H., Odugbesan, J. A., Adebayo, T. S., & Wong, W. K. (2021). Investigating the causal relationships among carbon emissions, economic growth, and life expectancy in Turkey: evidence from time and frequency domain causality techniques. *Sustainability*, 13(5), 2924.

Sibanda, K., Garidzirai, R., Mushonga, F., & Gonese, D. (2023). Natural resource rents, institutional quality, and environmental degradation in resource-rich Sub-Saharan African countries. *Sustainability*, 15(2), 1141.

Shahbaz, M., Hye, M. A., Tiwari, A K., & Leitao, N. C. (2013). Economic growth, energy consumption, financial development, international trade and CO2 emissions in Indonesia. *Renew Sustainable Energy*, 25, 109–121

Solarin, S.A., Al-Mulali, U., Musah, I., Ozturk, I. (2017). Investigating the pollution haven hypothesis in Ghana: An empirical investigation. *Energy* 2017, 124, 706–719.

Solow, R. M. (1974). Intergenerational equity and the exhaustible resources. *Review of Economic Studies*, Symposium 29–46.

Solow, R.M. (1956) A contribution to the theory of economic growth. *Q J Econ* 70(1):65–94. <https://doi.org/10.2307/1884513> .

Stern, D. I. (2004). The rise and fall of the Environmental Kutznet Curve. *World Development*, 32(8), 1419-1439.

Stiglitz, J. E. (1969). Distribution of income and wealth among individuals, *Econometrica* 37, 382-397.

Svirydzenka, K. (2016). Introducing a new broad-based index of financial development, IMF Working Paper WP/16/5.

Tadesse, S. A. (2005). Financial development and technology. Working Paper No. 749

Tamazian, A., Chousa, J. P., & Vadlamannati, K. C. (2009). Does higher economic and financial development lead to environmental degradation: Evidence from BRIC countries. *Energy Policy*, 37(1), 246–253. <https://doi.org/10.1016/j.enpol.2008.08.025>

Ulucak, Z.S., Ilkay, S., C., Ozcan, B., & Gedikli, A. (2020). Financial globalization and environmental degradation nexus: Evidence from emerging economies. *Resources Policy*, 67, 101698. <https://doi.org/10.1016/j.resourpol.2020.101698>

Investing, I., & Plan, A. A. (2012). *World Investment Report 2012*.

Wackernagel, M., & Galli, A. (2007). An overview on ecological footprint and sustainable development: a chat with Mathis Wackernagel. *International Journal of Ecodynamics*, 2(1), 1-9.

World Bank. (2022). *World development indicators 2022*. The World Bank.

Yamineva, Y., & Liu, Z. (2019). Cleaning the air, protecting the climate: Policy, legal and institutional nexus to reduce black carbon emissions in China. *Environmental science & policy* 95, 1–10

Yinusa, O. G., Aworinde, O. B., & Ibrahim, A. (2020) : Institutional quality, financial development and inclusive growth: Asymmetric cointegration approach, *International Journal of Management, Economics and Social Sciences*, 9(3,) 182-205. ISSN 2304-1366.

Zakaria, M., & Bibi, S. (2019). Financial development and environment in South Asia: the role of institutional quality. *Environmental Science and Pollution Research*, 26, 7926-7937.

RESEARCH ARTICLE

Exploring the link between technological innovation, economic development, and CO2 emissions in the US. Application of the ANN and EKC techniques

Seun Adebanjo^{1*}, Wasiu Babajide Akintunde²

¹Statistical training and consultation, Nigeria

²Texas Tech University, United States of America

Corresponding Author: Seun Adebanjo. Email: seunadebanjo9@gmail.com

Received: 26 February, 2024, Accepted: 11 March, 2024, Published: 12 March, 2024

Abstract

The developed world, which includes the United States of America (US), constantly works to reduce carbon dioxide emissions for the benefit of its people's health while advancing technical innovation to achieve impressive economic development. This motivates this study to use artificial neural network (ANN) and the Environmental Kuznets Curve (EKC) technique to explore the relationship between technological innovation, economic development, and CO2 emissions in the US in order to add to the body of knowledge already in existence. For this study, secondary data from 1990 to 2023 was gathered from the World Bank and globaleconomy.com. The results show that, whereas the artificial neural network shows that economic development contributes more to CO2 emissions, the Environmental Kuznets Curve shows that higher levels of technical innovation and economic development lower CO2 emissions. Hence, in order to maintain CO2 emissions at the lowest possible level and improve the nation's atmospheric conditions, the US government should guarantee sustainable policies that will promote economic development and technological innovation.

Keywords: Technological innovation; Economic development; CO2 emissions; EKC; ANN

Introduction

Worldwide, society faces the urgent task of reducing the harmful impacts of human-caused carbon dioxide (CO2) emissions and their impact on climate change due to the growing emphasis on economic growth (Chen et al., 2016; Gardiner & Hajek, 2020; Lv et al., 2019). Environmental pollution is believed to increase during the initial phase of economic development and then decline as income levels rise, according to Grossman and Krueger (1995). According to Saha et al. (2020), 41 states in the US, including Washington, D.C., are reducing CO2 emissions while raising the US GDP. This provided additional support for the findings of Wang and Kim (2024), who found that several U.S. states had just attained absolute decoupling—a reduction in CO2 emissions while maintaining economic growth. The use of low-emission technologies, such as nuclear power, the conversion of coal to gas, and the restructuring of the economy to create a more sustainable one, are partially to blame for this.

The negative effect of economic growth on environmental quality has resurfaced because of the significant rise in CO2 emissions caused by global warming and climate change. The pressing need to tackle this dilemma has led to a heightened emphasis on the relationship between energy usage, technological advancement, and ecological sustainability. This intricate connection is a significant topic in scholarly and policy debates since it has the capacity to influence the direction of our environmental, economic, and social destiny. Technological developments are crucial to the global initiative to decrease CO2 emissions (Gu et al., 2019; Khan et al., 2020). These advances include a wide range of areas, such as energy generation, transportation, industry, and construction.

Technological innovation is crucial in creating new, efficient, and environmentally friendly solutions as societies want to shift towards cleaner and more sustainable energy systems (Bibri et al., 2023). Advancements in renewable energy technology, energy-efficient appliances, electric vehicles, and sustainable materials have greatly changed our energy situation and provided optimism for a more environmentally friendly and sustainable future. Technological innovation's growing popularity is crucial, but it does not function independently. The energy industry contributes significantly to worldwide CO2 emissions and is strongly connected to economic and political factors (Babatunde et al., 2017; Rehman et al., 2022). The energy intensity of economies, which quantifies the energy spent per unit of economic production, is a crucial indicator for understanding this connection. High energy intensity indicates inefficiencies in energy utilisation and implies a higher environmental impact per unit of economic output. As nations develop, their energy usage typically rises, leading to a possible increase in CO2 emissions (Waheed et al., 2019; Wang et al., 2016).

Technological advancements that enhance energy efficiency can break the link between economic growth and energy consumption by enabling economic expansion while keeping energy usage the same or decreasing it. Economic and political uncertainty has become a crucial issue that could help explain the mechanisms and trajectory of energy systems and environmental results. Economic downturns, political conflicts, and policy changes can greatly impact technical innovation, energy intensity, and CO2 emissions, according to Geels (2013) and Adebayo et al. (2023). These uncertainties can either facilitate or impede countries' shift towards cleaner energy sources and energy-efficient practices by interacting with other factors. Uncertainty in the economic and political spheres can affect the connection between energy intensity and CO2 emissions. It can also either enhance or reduce the impact of energy intensity on CO2 emissions. Businesses may be motivated to implement sustainable practices in response to economic and political concerns (Su et al., 2022). For example, they can use resources to enhance energy efficiency in order to lower expenses and guarantee stability amid unpredictable political and economic conditions. This scenario may result in decreased energy intensity and fewer CO2 emissions. Moreover, political instability may lead to a greater emphasis on addressing climate change and investing in renewable energy (Ren et al., 2023). Policymakers should view the development of green technology as a means to enhance economic stability and promote job growth. The anticipated economic and political uncertainties are projected to have a positive effect on the partnership by encouraging technical innovation. In periods of economic and political instability, governments and businesses may be inclined to seek out and implement new strategies to tackle increasing environmental issues (Su et al., 2022). Economic uncertainty, including financial market instability or economic downturns, can affect enterprises' motivation and ability to invest in and participate in research and development for technology that reduces CO2 emissions. Amid economic volatility, corporations can reduce research and development (R&D) funding, leading to a deceleration in the advancement and implementation of sustainable technology and a possible rise in CO2 emissions. Businesses might be reluctant to allocate limited resources to research and development if they are uncertain about the stability of the regulatory environment (Dunyo & Odei, 2023). Economic uncertainty can influence the relationship between technical innovation and CO2 emissions reduction by affecting R&D investment, resource allocation, risk aversion, and policy support for countries' emission reduction initiatives. Minimising these uncertainties by maintaining stable economic conditions and implementing clear, consistent

emissions rules is essential to promoting technological innovation activities focused on efficiently tackling CO2 emissions. This study objective contributes to the growing literature by exploring the link between technological innovation, economic development, and CO2 emissions in the US using the application of ANN (a machine learning technique) and the EKC technique, which will significantly improve previous related studies.

Literature review and hypothesis development

A portion of the literature on the connection between global economic growth, technological innovation, and CO2 emissions was examined in this research study. The relationship between CO2 emissions and economic growth has been the subject of a global research explosion and broad scholarly awareness (e.g., Gardiner & Hajek, 2020; Adebayo et al., 2023; Waheed et al., 2019). However, a number of shortcomings exist in this emerging field of research that limit our ability to completely understand the influences on the variables controlling global CO2 emissions. Research exploring the causal relationship between energy intensity, technological innovation, and CO2 emissions between high- and low-income nations concurrently is scarce, despite the relevance of this connection being theorised and seen. Because it attempts to close a gap in the literature, this paradigm adds interest to the current investigation. Moreover, although an expanding corpus of studies has improved our comprehension of the relevance and impacts that carbon dioxide emissions may have on economic growth (Rehman et al., 2022; Ren et al., 2023), we still know very little about the potential mechanisms through which carbon dioxide emissions may influence the performance of economic growth. This is significant because it supports the idea that reducing CO2 emissions promotes green growth and is necessary for sustainable development (Bai et al., 2022; Hickel & Kallis, 2020). According to Saha and Jaeger's (2020) report, more than 80% of U.S. states have disconnected their emissions from economic growth. The states mentioned vary in size and are distributed across different regions of the country, such as Maine and New York in the Northeast, Alabama and Georgia in the South, Indiana and Ohio in the Midwest, and Alaska and Nevada in the West. Maryland had the highest reduction in emissions at 38%, followed by New Hampshire at 37%, the District of Columbia at 33%, Maine at 33%, Alaska at 29%, and Georgia at 28% among the 41 states. Despite federal reversals of climate regulations, this discovery suggests that the United States can still make substantial advancements in addressing climate change at the state level.

In order to investigate the relationship between technological innovation, carbon dioxide emissions, and economic growth from 1985 to 2019 in 35 Belt and Road countries, Khan et al. (2023) used three-stage least square models, ordinary least squares, two-step system generalised method of moments, two-step difference generalised method of moments, seemingly unrelated regression, and three-stage least square models. Their findings show that technological innovation improves environmental quality while reducing carbon dioxide emissions.

Furthermore, Javed et al. (2023) examined oil prices, economic growth, and foreign direct investment in Italy between 1971 and 2019. The study's findings indicate that GDP positively affects carbon emissions, while the GDP square term negatively affects emissions, supporting the environmental Kuznets curve hypothesis using non-Linear ARDL. Wang et al. (2024) claim that the effect of economic growth on environmental degradation first increases with rising income levels before showing a declining tendency. Furthermore, trade protection appears to be detrimental to enhancing the quality of the environment globally, supporting the validity of the EKC hypothesis within the parameters of the study.

The Environmental Kuznets Curve (EKC) was used by Adebanjo et al. (2022) to investigate the relationship between air pollution and the Jordanian economy. Their research indicates that the country's CO2 emissions are negatively impacted by Jordan's economic growth, which is consistent with the EKC hypothesis, which suggested an inverse relationship between CO2 emissions and economic growth (inverse U-shaped hypothesis). According to Ozokcu (2017), the Environmental Kuznets Curve (EKC) is a theory that suggests a relationship between environmental deterioration and economic growth, with a pattern that resembles an inverted U. In the interim, it's

critical to emphasise that economic expansion has the potential to increase carbon dioxide emissions. However, it is imperative to acknowledge that this correlation may undergo a reversal at a given level. Therefore, it is plausible to argue that, as demonstrated by Halicioglu (2009), a rise in economic growth will probably lead to a steady drop in carbon dioxide (CO₂) emissions. As a result, one could contend that achieving economic growth is a feasible way to achieve a state that is more environmentally sustainable. By examining the relationship between technological innovation, economic development, and CO₂ emissions in the US using the application of ANN (a machine learning technique) and EKC technique—which will greatly enhance previous related studies—the main goal of this study is to close a gap that has been identified in the body of current scholarly work.

The following is a development of the study's hypothesis, which is based on the EKC theory.

H1: Economic development significantly declines CO2 emissions

H2: Technological innovation significantly reduces CO2 emissions.

Data and methodology

Data description

Secondary data was collected from the World Bank Development Indicator and TheGlobalEconomy.com, respectively, with a period of 1990 to 2024 because it is more recent to align with the current happenings and based on the data availability using the purposive sampling technique. The US technological innovation proxied by the innovation index is collected via the [USA Innovation Index \(data, chart | TheGlobalEconomy.com\)](#) (measured in points), while the carbon dioxide (CO2) emissions and economic development proxied by the GDP and per capita income are collected via World Bank development indicators. The CO2 emissions are measured in million kilotons, the GDP is measured in billions of dollars, and the per capita income, which is calculated by the US gross national income divided by their population, is measured in dollars.

Methodology

This study adopted a quantitative causal design that examines the links between the variables of interest in this study, and the method of analysis includes summary statistics to summarise the dataset using the mean and standard deviation, the Environmental Kuznets Curve (EKC), which is an econometrics technique, and machine learning techniques such as artificial neural networks (ANN). The correlation matrix was also applied to examine the direction and strength of the link between the variables. The SPSS and STATA software were used for the analysis of this study.

EKC model structure

The EKC hypothesis according to the work of Adebajo et al. (2022) and Ozokcu (2017) which can be model mathematically as

This study uses the EKC to comprehend how environmental degradation and GDP, or other indicators of economic development, relate to one another (Adebanjo et al., 2022). The inverse U-shaped hypothesis would be typical, as seen in figure 1 below. The study's focus and the outcome variable of the EKC model are environmental degradation, such as carbon dioxide (CO2) emissions in the US, with GDP, per capita income (PCI), and technological innovation (Tech) serving as the independent variables. The constant term in the model is denoted by β_0 , while the independent variable's coefficient estimates are represented by β_1 to β_2 , and the period in years is indicated by t .

According to Ozokcu (2017), the EKC hypothesis shows an inverse relationship between economic growth and CO2 emissions. A growth in personal income in the early phases of economic development also results in an increase in personal affluence. Up to a certain point (the turning point), the level of specialisation increases. The rate at which the environment deteriorates per capita decreases with sustained economic expansion. This is depicted in the standard EKC figure below. The EKC curve, which represents the hypothesised link between wealth per capita and degradation per capita, predicts whether or not the latter will remain high while maintaining the current level of degradation. The EKC theory is as follows: The first impact of economic activity on the base of resources usually results in a minor quantity of pollution that is biodegradable. Industrialization is accompanied by an acceleration of resource depletion and waste generation, especially in agriculture and other extractive and industrial operations. While low levels of development allow for gradual pollutant discharge, acceleration, and levelling off, higher levels of development result in a decrease in environmental pollution through structural change in information-intensive industries and services, along with rising environmental regulations and costs (Panayotou, 1993). The Kuznets-Phillips curve (EKC) is the value, as shown in figure 1, at which the indicator of environmental deterioration E reaches its maximum. This value is expressed as $Y^* = \exp(-\beta_1/2\beta_2)$, according to Panayotou (1993). As a diagnostic strategy for the machine learning and EKC models used in this study, the dataset's normality and the model's stability were examined in the interim.

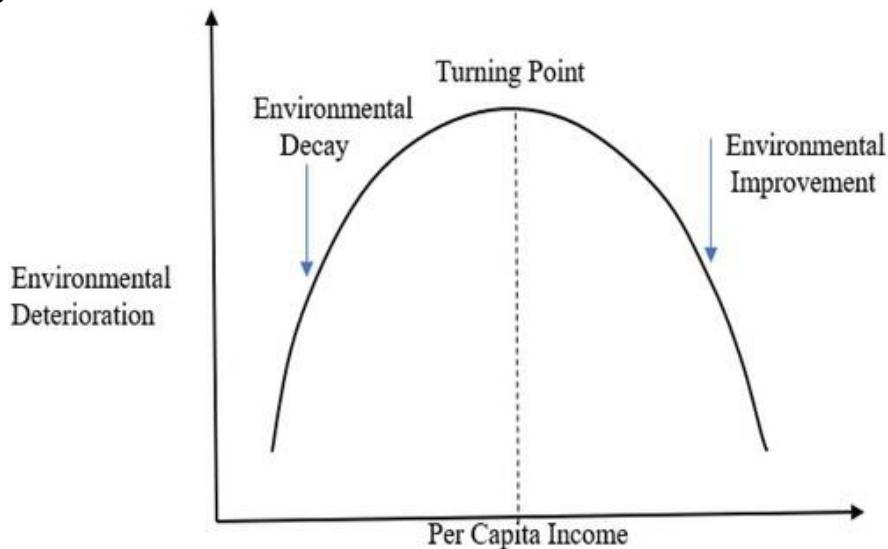
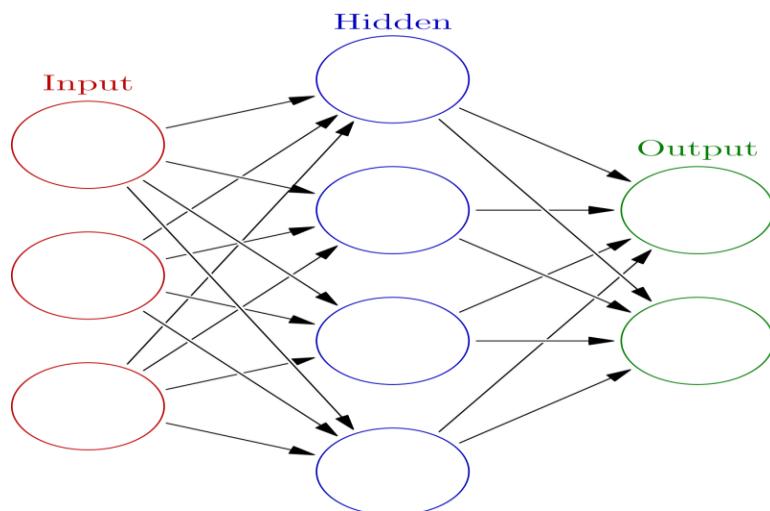


Figure 1: EKC structure

Artificial neural network (ANN)

It's a useful method that models the two hidden layers, the input variables, and the output variable (CO2 emission). Here, it makes perfect sense to use an artificial neural network to determine or predict carbon dioxide emissions. It is not only a superior tool for predictive analytics but also a substitute for regression analysis.


The neural network equation is formed by combining the independent variables, their corresponding weights, and the intercept term for each neuron in a linear fashion. The neural network equation looks like this:

Where K is the output variable of ANN model.

δ_1 to δ_3 are the weights or the beta coefficients

X_1 to X_3 are the independent variables or the inputs such the GDP, PCI and TECH, and the Hidden layers pattern are H (1,1) to H (1,3).

Intercept = δ_0

Figure 2: Typical structure of artificial neural network

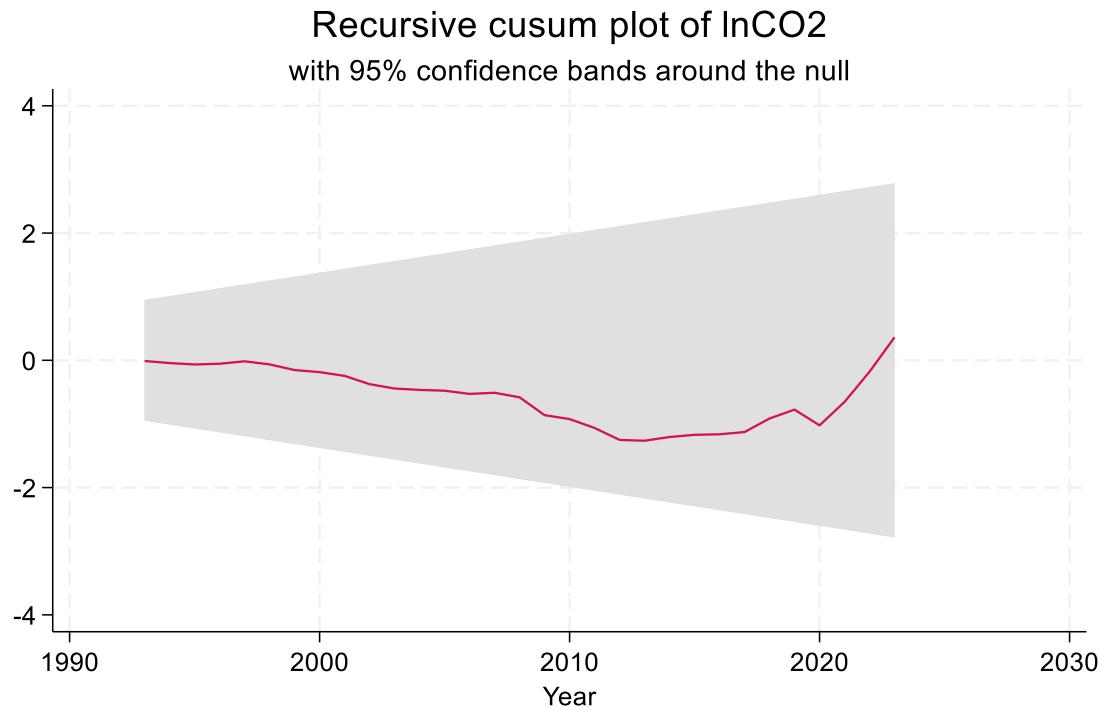
Results and Discussion

Table 1 summarises the dataset with mean and standard deviation, which shows that the average log of the per capita income of US individuals has a mean value of about 10.7 USD, exceeding other variables like the average log of CO₂, the average log of GDP, and the average log of technological innovation, followed by the log of GDP with a mean value of about 9.5 billion USD, and the variable with the least variability is the log of technological innovation with a standard deviation value of about 0.06 points.

Table 1: Summary statistics

Variables	N	Mean	Standard Deviation
lnCO2	34	1.651	0.072
lnGDP	34	9.464	0.431
lnTech	34	4.036	0.063
lnPCI	34	10.686	0.345

Source: Author's computation


Table 2: EKC equations

Overall Model P-value = 0.0000, R-squared = 0.4907, Root MSE = 0.05291
lnCO2 Coefficient Std. err Test Statistic P-value
lnGDP 5.074 0.983 5.16 0.000
InGDP ² -0.271 0.052 -5.20 0.000
Constant -22.032 4.623 -4.77 0.000
Overall Model P-value = 0.0272, R-squared = 0.2074, Root MSE = 0.066
lnCO2 Coefficient Std. err Test Statistic P-value
lnTech 50.733 25.570 1.98 0.056
InTech ² -6.338 3.172 -2.00 0.055
Constant -99.834 51.524 -1.94 0.062
Overall Model P-value = 0.0001, R-squared = 0.4490, Root MSE = .05503
lnCO2 Coefficient Std. err Test Statistic P-value
lnPCI 8.687 1.830 4.75 0.000
PCI ² -0.410 0.085 -4.77 0.000
Constant -44.349 9.745 -4.55 0.000

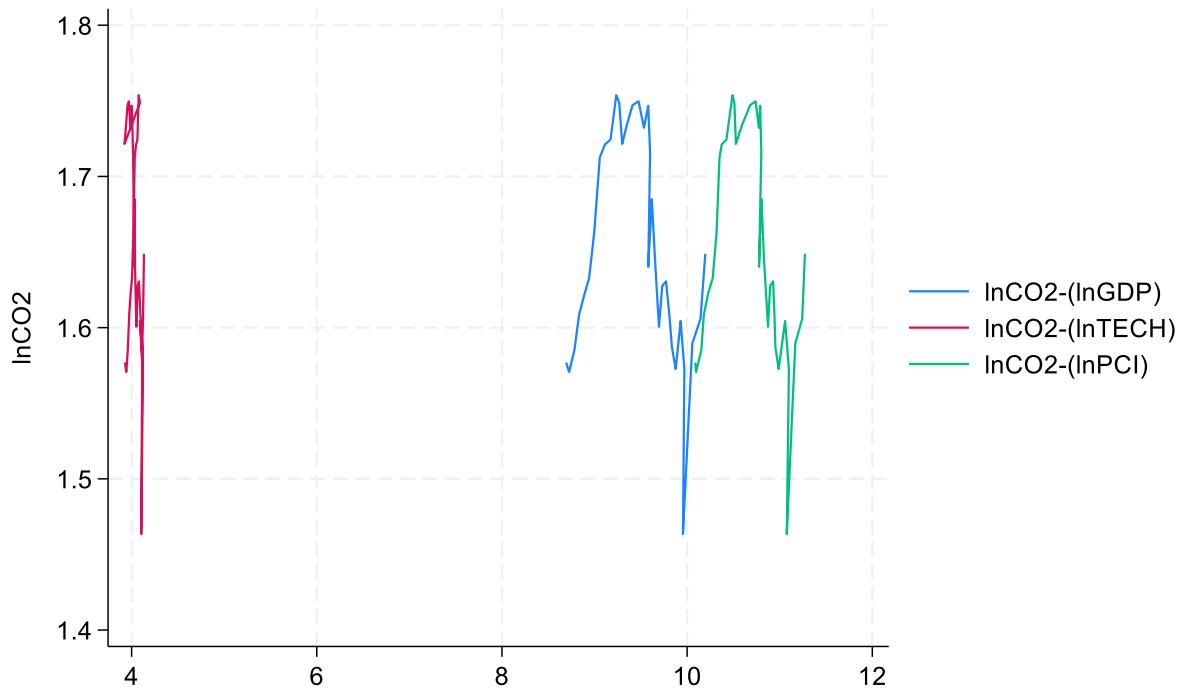

Source: Author's computation

Table 2 shows that coefficient estimates of the squared of the log of the GDP and PCI have a significant negative effect at 5% level on the carbon dioxide (CO2) emissions, which implies that the economic development proxied by the GDP and the per capita income contribute negatively significantly to the CO2 emissions in the US, indicating that a high level of US GDP and per capita income helps to reduce the CO2 emissions in the United States of America, supporting the EKC theory and the first research hypothesis (H1) that economic development significantly declines CO2 emissions. The coefficient estimates of the squared of the technological innovation are statistically significant at the 10% level and have a significant negative influence on the CO2 emissions, implying that high technological innovation in the US will minimise the CO2 emissions within the United States, supporting the second research hypothesis (H2) that the technological innovation significantly reduces CO2 emissions. Besides, among the three EKC equations, the first one outperformed the other with the highest R-squared of about 49.1% and the least root mean square error of about 0.05.

Figure 3 shows the CUSUM plot for the best-fit EKC model, and we can see that the model parameters in the red line fall within the two 95% confidence intervals, indicating that the model is stable. Besides, Figure 4 demonstrated the graph of CO2 emissions against the GDP, technological innovation (Tech), and per capita income (PCI), which agrees with the inverse U-shaped postulated by the EKC theory.

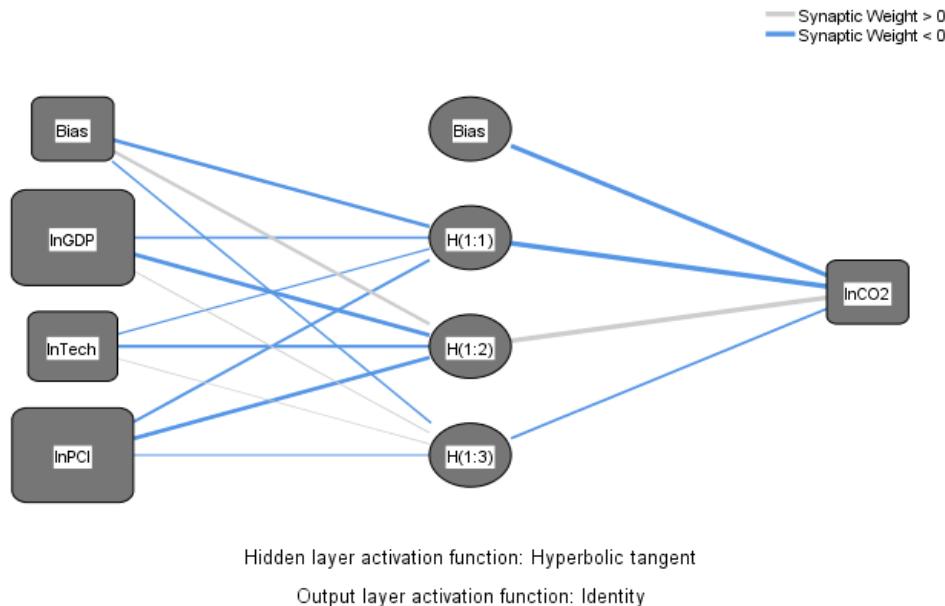


Figure 3: CUSUM test for EKC model stability

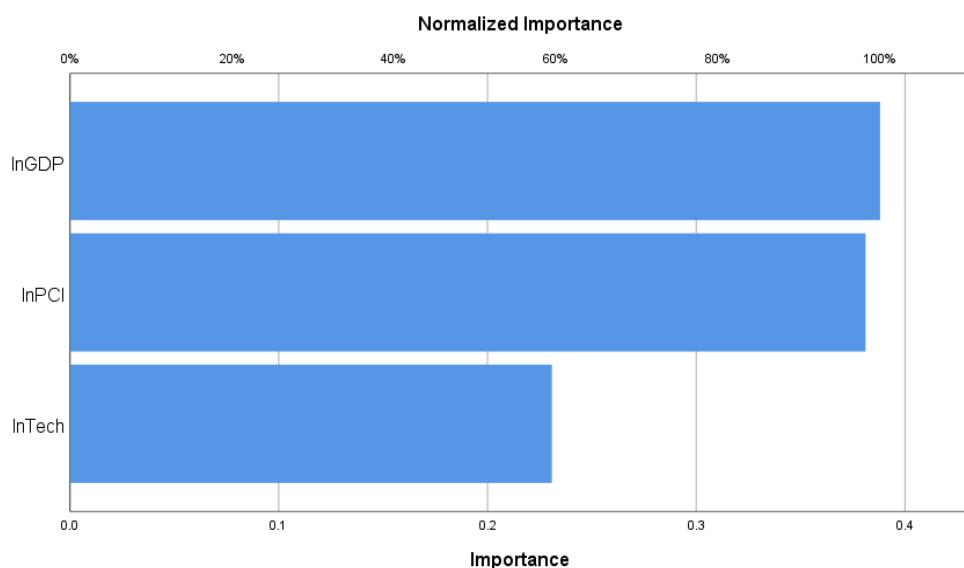


Figure 4: Graph of CO₂ emission against the GDP, Technological innovation (TECH) and Per capita income (PCI)

Figure 5 demonstrates the output of the artificial neural network model structure with the hidden layers $H(1,1)$, $H(1,2)$, and $H(1,3)$ representing the input and output with a minimal error bias of 0.001 (see Table 3). The input variables are the log of the GDP, the log of technological innovation, and the log of per capita income, while the output variable is the log of CO2 emissions. Figure 6 shows the contribution of the independent or input variables, and we can see that the log of GDP has the highest contribution growth pattern, followed by the log of per capita income and the log of technological innovation.

Figure 5: ANN Model Structure

Figure 6: Independent variables contribution chart

Table 3: Independent Variables importance and the ANN model summary

	Importance	Normalized Importance
lnGDP	0.388	100.0%
lnTech	0.231	59.5%
lnPCI	0.381	98.2%
Model	Percent	Error
Testing	76.5	0.001
Training	23.5	

Source: Author's computation

Table 3 shows the importance of the independent variables in the ANN model, and it reveals that the log of GDP has the highest contribution of 100%, followed by the log of per capita income with a contribution of 98.2%, and the log of technological innovation with a contribution of 59.5%. The ANN model's testing accuracy is 76.5% with a very minimal error bias of 0.001.

Table 4: Correlation matrix

	lnCO2	lnGDP	lnTech	I lnPCI
lnCO2	1.000			
lnGDP	-0.2150	1.000		
lnTech	-0.3245	0.7447	1.000	
lnPCI	-0.2109	0.9986	0.7251	1.000

Source: Author's computation

Table 4 shows that the log of CO2 has a weak and negative correlation with the log of GDP, the log of technological innovation, and the log of per capita income, indicating that the higher the technological innovation and the economic development of the US proxied by the GDP and per capita income, the lower the CO2 emissions. Besides, the log of technological innovation has a strong and positive link with economic development, indicating that the higher the US technological innovation, the higher the country's economic development. This suggests that improved technological innovation aids the economic development of a nation.

Table 5: Skewness and kurtosis tests for normality

Variables	N	Pr(skewness)	Pr(kurtosis)	Prob>chi2
lnCO2	34	0.5730	0.6970	0.7854
lnGDP	34	0.5884	0.0630	0.1370
lnTech	34	0.6197	0.0193	0.0649
lnPCI	34	0.6238	0.0484	0.1177

Source: Author's computation

Table 5 shows the normality of the dataset using the skewness and kurtosis tests, which show that $P > 0.05$, indicating that we do not reject the null hypothesis and suggesting that the data is normally distributed.

Discussion of findings

The analysis of this study shows that the squared log of GDP and PCI coefficients have a significant negative impact at a 5% level on carbon dioxide (CO₂) emissions. This suggests that higher levels of GDP and per capita income in the US contribute significantly to reducing CO₂ emissions, supporting the Environmental Kuznets Curve theory and the first research hypothesis (H1) that economic development leads to a decline in CO₂ emissions. The regression analysis shows that the coefficient estimates for the squared technological innovation are statistically significant at the 10% level. They have a significant negative impact on CO₂ emissions, indicating that high technological innovation in the US will reduce CO₂ emissions within the country. This supports the second research hypothesis (H2) that technological innovation significantly decreases CO₂ emissions. Among the three EKC equations, the first one demonstrated superior performance, with the highest R-squared value of approximately 49.1% and the lowest root mean square error of around 0.05. This corroborates Khan et al.'s (2023) research, which demonstrates that technological innovation enhances environmental quality and decreases carbon dioxide emissions. According to the Environmental Kuznets Curve (EKC) hypothesis, economic growth has a negative effect on a country's CO₂ emissions. This is in line with the findings of Adebanjo et al. (2022), which show that economic growth and CO₂ emissions are related in an inverse U-shaped way. This also supports the findings of Saha and Jaeger (2020) that over 80% of U.S. states have decoupled their emissions from economic development. The results indicate that the ANN model improved the precision of the model outcomes. The log of GDP had the highest contribution of 100%, followed by the log of per capita income with a contribution of 98.2%, and the log of technological innovation with a contribution of 59.5%. The testing accuracy of the ANN model is 76.5% with a negligible error bias of 0.001.

The correlation matrix revealed that the logarithm of CO₂ emissions has a weak negative correlation with the logarithm of GDP, technological innovation, and per capita income. This suggests that higher levels of technological innovation and economic development, as represented by GDP and per capita income, are associated with lower CO₂ emissions in the US. Furthermore, there is a clear and positive correlation between the rate of technological innovation and economic growth, suggesting that as technological innovation increases in the US, so does the country's economic development. Improved technological innovation in the United States and other countries contributes to economic development.

Conclusion

Nations worldwide, especially industrialised ones like the US, work to reduce carbon dioxide emissions to promote a healthy environment for their population and enhance technical innovation for significant economic growth. This study aims to enhance current knowledge by investigating the relationship among technological innovation, economic growth, and CO₂ emissions in the US. This will be achieved through the utilisation of ANN (a machine learning method) and the EKC technique, leading to advancements in previous research in this area. The results suggest that economic development, as measured by GDP and per capita income, has a greater contribution to CO₂ emissions, according to the Artificial Neural Network (ANN) model. Additionally, the Environmental Kuznets Curve (EKC) indicates that increased economic development and technological innovation lead to a decrease in CO₂ emissions. The correlation matrix showed that there is a positive relationship between the level of technical innovation in the US and the country's economic development. The US government should implement sustainable policies to increase economic development and technical advancements, thereby reducing CO₂ emissions and improving the country's atmospheric conditions, which will enhance environmental quality.

Declaration

Acknowledgment: NA

Funding: NA

Conflict of interest: There are no conflicts of interest between the authors.

Authors contribution: The authors work hand in hand with each other from the beginning of the research until the end

Data availability: Data is available with the corresponding author and can be accessed upon diligent request.

References

Adebanjo, S. A., & Shakiru, T. H. (2022). Dynamic relationship between air pollution and economic growth in Jordan: An empirical analysis. *Journal of Environmental Science and Economics*, 1(2), 30-43.

Adebayo, T.S., Kartal, M.T., Ağa, M., & Al-Faryan, M.A.S. (2023). Role of country risks and renewable energy consumption on environmental quality: Evidence from MINT countries. *J Environ Manage*, 327:116884.

Babatunde, K.A., Begum, R.A., & Said, F.F. (2017). Application of computable general equilibrium (CGE) to climate change mitigation policy: A systematic review. *Renewable and Sustainable Energy Reviews*, 78:61-71.

Bai, X., Wang, K-T., Tran, T.K., Sadiq, M., Trung, L.M., & Khudoykulov, K. (2022). Measuring China's green economic recovery and energy environment sustainability: Econometric analysis of sustainable development goals, *Economic Analysis and Policy*, 75:768-779.

Bibri, S.E., Alexandre, A., Sharifi, A., & Krogstie, J. (2023). Environmentally sustainable smart cities and their converging AI, IoT, and big data technologies and solutions: an integrated approach to an extensive literature review. *Energy Inform.* 6(1):9.

Chen, P-Y., Chen, S-T., Hsu, C-S., & Chen, C-C. (2016). Modeling the global relationships among economic growth, energy consumption and CO2 emissions, *Renewable and Sustainable Energy Reviews*, 65:420-431.

Dunyo, S. K., & Odei, S. A. (2023). Firm-Level Innovations in an Emerging Economy: Do Perceived Policy Instability and Legal Institutional Conditions Matter? *Sustainability*, 15 (2):1570.

Gardiner, R., & Hajek, P. (2020). Municipal waste generation, R&D intensity, and economic growth nexus - A case of EU regions. *Waste Manag.* 114 (1):124-135.

Geels, F.W. (2013). The impact of the financial-economic crisis on sustainability transitions: Financial investment, governance and public discourse, *Environmental Innovation and Societal Transitions*, 6:67-95.

Gu, W., Zhao, X., Yan, X., Wang, C., & Li, Q. (2019). Energy technological progress, energy consumption, and CO2 emissions: empirical evidence from China. *Journal of Cleaner Production*, 236, 117666.

Grossman, G.M., & Alan B. Krueger, A.B. (1995). Economic Growth and the Environment, *The Quarterly Journal of Economics*, 110 (2): 353–377.

Hickel, J., & Kallis, G. (2020) Is Green Growth Possible? *New Political Economy*, 25(4), 469-486,

Javed, A et al. (2023) Asymmetric nexus between green technology innovations, economic policy uncertainty, and environmental sustainability: evidence from Italy. *Energies* 16(8):3557.

Khan, H., Khan, I., & Binh, T. T. (2020). The heterogeneity of renewable energy consumption, carbon emission and financial development in the globe: a panel quantile regression approach. *Energy Rep.* 6: 859–867.

Khan, I., Zhong, R., Khan, H., Dong, Y., & Nuță, F.M. (2023). Examining the relationship between technological innovation, economic growth and carbon dioxide emission: dynamic panel data evidence. *Environ Dev Sustain.* <https://doi.org/10.1007/s10668-023-03384-w>.

Lv, Q., Liu, H., Yang, D., Yang, D., & Liu, H. (2019). Effects of urbanization on freight transport carbon emissions in China: Common characteristics and regional disparity. *Journal of Cleaner Production*, 211:481-489.

Panayotou, T. (1993). Empirical tests and policy analysis of environmental degradation at different stages of economic development. *World Employment Programme research working paper. WEP 2-22, Technology and Employment Programme*, 42.

Rehman, A., Ma, H., Ozturk, I., & Radulescu, M. (2022). Revealing the dynamic effects of fossil fuel energy, nuclear energy, renewable energy, and carbon emissions on Pakistan's economic growth. *Environmental Science and Pollution Research*, 29(32): 48784-48794.

Ren, X., Li, J., He, F., & Lucey, B. (2023). Impact of climate policy uncertainty on traditional energy and green markets: Evidence from time-varying granger tests, *Renewable and Sustainable Energy Reviews*, 173:113058.

Saha, D. & Jaeger, J. (2020). Ranking 41 US States Decoupling Emissions and GDP Growth. Available online: [Which US States Are Decoupling GDP and Emissions? | World Resources Institute \(wri.org\)](https://www.wri.org/research/which-us-states-are-decoupling-gdp-and-emissions)

Su, C-W., Khan, K., Umar, M., & Chang, T. (2022). Renewable energy in prism of technological innovation and economic uncertainty, *Renewable Energy*, 189:467-478.

Ozokcu, S., & Ozdemir, O. (2017). Economic growth, energy, and environmental Kuznets curve. *Renew Sust Energ Rev.* 72:639–47.

Waheed, R., Sarwar, S., & Wei, C. (2019). The survey of economic growth, energy consumption and carbon emission, *Energy Reports*, 5:1103-1115,

Wang, Y., Li, L., Kubota, J., Han, R., Zhu, X., & Lu, G. (2016). Does urbanization lead to more carbon emission? Evidence from a panel of BRICS countries. *Appl. energy* 168, 375–380.

Wang, Z., & Kim, M.K. (2024). Decoupling of CO₂ emissions and income in the U.S.: A new look from EKC. *Climatic Change* 177, 52. <https://doi.org/10.1007/s10584-024-03706-5>

Wang, Q., Wang, X., & Li, R. (2024). Reinvestigating the environmental Kuznets curve (EKC) of carbon emissions and ecological footprint in 147 countries: a matter of trade protectionism. *Humanit Soc Sci Commun* 11, 160. <https://doi.org/10.1057/s41599-024-02639-9>

RESEARCH ARTICLE

Navigating a Greener Future: The Role of Geopolitical Risk, Financial Inclusion, and AI Innovation in the BRICS – An Empirical Analysis

Mohammad Ridwan^{1*}, Sarder Abdulla Al Shiam², Hemel Hossain³, Shake Ibna Abir⁴, Shaharina Shoha⁴, Md Shah Ali Dolon⁵, Afsana Akhter¹, Hasibur Rahman⁶

¹Department of Economics, Noakhali Science and Technology University, Sonapur, Noakhali-3814, Bangladesh

²Department of Management -Business Analytics, St Francis College, USA

³Masters in Bank Management, Dhaka University, Bangladesh

⁴Department of Mathematics, Western Kentucky University, Bowling Green, KY, USA

⁵Department of Finance and Financial Analytics, University of New Haven, West Haven, United States

⁶School of Business & Technology, Washington University of Virginia, 4300 Evergreen Ln, Annandale, VA 22003, USA

Corresponding author: Mohammad Ridwan. Email: m.ridwan.econ@gmail.com

Received: 28 February, 2024, Accepted: 27 March, 2024, Published: 27 March, 2024

Abstract

This study examines the impact of Geopolitical Risk, Financial Inclusion, and AI Innovation on CO₂ emissions in BRICS countries from 2000 to 2019, alongside Renewable Energy Use and Economic Growth. Econometric tests revealed cross-sectional dependence and heterogeneity across the panel, with unit root tests confirming stationarity. A second-generation panel cointegration test established a long-run equilibrium relationship among the variables. Using the Panel Autoregressive Distributed Lag (ARDL) model, the analysis found that GDP and Geopolitical Risk significantly increase CO₂ emissions in both the short and long run. In contrast, AI Innovation, Financial Inclusion, and Renewable Energy Use substantially reduce emissions across time horizons. Robustness checks employing Driscoll-Kraay Standard Errors, Augmented Mean Group, and Common Correlated Effects Mean Group methods confirmed the consistency of the findings. The study concludes that promoting AI innovation, enhancing financial inclusion, and encouraging renewable energy adoption are essential strategies for reducing CO₂ emissions in the BRICS countries, especially in the context of rising geopolitical uncertainties.

Keywords: Geopolitical Risk; financial Inclusion; AI Innovation; Renewable Energy; BRICS Region

Introduction

The persistent pursuit of fiscal objectives by a nation over a period of time is the fundamental reason behind certain elements that lead to the destruction of ecosystems (Hassan et al., 2024; Hossain et al., 2023). The rise of industry has caused severe ecological degradation, particularly pollution of the environment and air, global warming, the depletion of natural assets, and erosion in biodiversity (Sezgin et al., 2024). Various contaminants, whether occurring naturally or as a consequence of human action, have the potential to exacerbate the atmosphere. Emissions of CO₂ are a hazardous pollutant that adversely affects the ecosystem (Sadiq et al.,

2024). The world's greatest developing nations BRICS, have seen a huge increase in CO2 production (Mngumi et al., 2024). At a time when researchers are delving deeper into the conflicting balance between economic expansion and the environment, they find themselves at a critical crossroads (Sadik-Zada and Gatto, 2023). According to Tang et al. (2022) and Ming et al. (2022), these countries were liable for 14,759 billion tons of CO2 in 2019. This figure reflects almost 43.19% of the global CO2 emissions generated. Furthermore, making up about 40% of global emissions, the BRICS countries bear a large portion of the blame for the releases of CO2. They are categorized as one of the five carbon-emitting nations due to their significant 41% contribution to worldwide CO2 emissions (Du et al., 2022; Sharif et al., 2020). This demonstrates the vital function they play in combating climate change and transitioning to clean energy sources (Wei et al., 2023; Ridwan, 2023). The BRICS group comprises the world's most significant emerging economies, holding for 42% of the worldwide population. UNCTAD (2023) reveal that the BRICS's GDP share of the global economy grew from 18% in 2010 to 26% in 2021. These concerning statistics highlight the importance of ongoing research from the BRICS region's perspective. By considering significant factors such as financial inclusion, AI innovation, and geopolitical risk, we can achieve notable outcomes. Policymakers may implement the findings of the inquiry to promote environmental sustainability in the chosen area. The most important type of green innovation is thought to be sustainable energy technologies and will likely be the primary force behind the development of clean energy sources (Khattak et al., 2024). We must understand the current state of green power investments in the BRICS territory in the context of their historical power policy and economic growth trajectory (Yadav et al., 2024). The BRICS economies' shift towards energy efficiency is indicative of the shifts occurring place in their finances and policies (Azam, 2019). Multiple studies (including Nunez et al., 2023) have underscored the efficacy of employing renewable power resources to lessen the outcome of global warming. Despite exerting significant efforts, these countries have only achieved a capability for environmentally friendly energy that holds about 36% of the global overall. In comparison, the European Union (EU) now possesses 44% of the world's total sustainable power capacity (Wei et al., 2022). The BRICS states have expressed their dedication to participating in worldwide efforts to reduce greenhouse gas emissions within the 2015 Paris Agreement and the hosting of the COP 26 in 2021 (Abbas et al., 2024). Consequently, they are committed to collaborating to accomplish zero emissions by 2050 (Udeagha & Muchapondwa, 2023; Islam et al., 2023).

Our work adds significantly to the current corpus of material. In order to distinguish it from other studies, this research primarily focuses on the frequently ignored field of AI innovation and financial inclusion from the perspective of the BRICS countries. The paper seeks to provide greater details of the correlation between CO2 emissions and AI within the discussed setting, with the goal of assisting in the development of environmentally friendly legislation. Furthermore, it utilizes unique AI data sourced from Our World in Data, specifically focusing on annual AI patent applications. This analysis focuses on trends as well as major study problems within the BRICS zone, namely FNI, GPR, AI, GDP expansion, REN, and CO2 emissions. An important addition to the collection of knowledge is the analysis of CO2 pollution in the BRICS area, which provides researchers with fresh perspectives. This study, being the first to our knowledge to conduct a comprehensive literature analysis, makes us to pursue the following study goals: How do FNI and AI affect the environment in the BRICS countries? What effects do GDP and GPR have on environmental sustainability? This research's importance stems from its attention to the neglected domains of financial inclusion and AI innovation, which have not received much attention from previous studies. To create a sustainable and habitable environment, further research in this area is essential, especially in light of the public's growing interest in green cities and ecological challenges. Using ARDL methodology along with a novel Cobb-Douglas production function, this study looks at how GDP, AI, FNI, REN, and GPR affect carbon emissions from 1990 to 2018. It also uses DKSE, AMG, and CCEMG techniques to ensure the results are robust. Policymakers in the BRICS region and

beyond can benefit from the insights this study offer, which will aid in achieving the SDGs and fostering sustainable economic growth.

There are five parts to this paper. The literature review, positioned after this introduction, reviews the relevant work before identifying the research gap. The third section covers the explanations of the analysis variables, methodology, and information sources. The fourth segment covers the outcomes and discussions. The last portion addresses the conclusions and suggestions for policy.

Literature Review

Many economic tools and methodologies have been used in recent studies, combining a variety of different explanatory variables across many geographical locations, and frequently producing contradictory conclusions. Furthermore, little research has been done on the central economic partnerships among the BRICS nations, which could have an impact on the global market. Consequently, in this section, we provide a succinct and critical analysis of the connection between these factors and CO2 pollutions.

GDP and CO2 Emission Nexus

Researchers have conducted numerous studies over the years to examine the link between CO2 emissions and GDP development. More inquiry is required to assess the link between GDP and CO2 emissions in the BRICS area. Voumik et al. (2023a) adopted the ARDL method to examine the CO2 emissions of Kenya over the years 1972 to 2021. The outcomes suggest that there prevails an upward connection between a country's emissions level and GDP. Pattak et al. (2023) undertook research in Italy from 1972 to 2021 utilizing the STIRPAT and ARDL methods. They declared that a 1% rise in Italy's GDP in long-term turns 8.08% boost in the release of CO2. Similarly, multiple investigations, such as He et al. (2019) in China, Finland, and Malaysia, Tufail et al. (2021) in developed nations, Raihan et al. (2023b) in Malaysia, and Ridwan et al. (2023) in France, have identified an encouraging relationship between CO2 pollutions and GDP. In contrast, Raihan et al. (2024a) undertook an inquiry examining the implication of GDP expansion on CO2 emissions in India covering 1965 to 2022. Their findings suggested that as the economy grew, there was a slight decline in pollutants. Raihan et al. (2023a) claim that faster GDP growth in China could potentially lead to lower emission levels in the future. In addition, Ridwan et al. (2024a) found that GDP had a major effect on reducing CO2 emissions, both in the short term and in the long term. Destek et al. (2020) offered decision-makers fresh views on using economic development as a means to enhance the longevity of the environment.

Geopolitical Risk and CO2 Emission Nexus

Geopolitical risk (GPR) and other social trends among state environmentalists and policymakers have brought up several serious environmental-related challenges (Uddin et al., 2023). Syed et al. (2022) performed an investigation into whether GPR affected the ecosystem in the BRICST countries. Conclusions deployed that CO2 emissions are falling in the middle and upper quartiles but rising in the lowest quartiles as a result of GPR. Bai (2021) published a study to explore the implications of GPR on the EF in Brazil, Colombia, Mexico, and Russia. They concluded that using GPR reduces carbon footprint. In their study, Adams et al. (2020) assessed the link between GPR and CO2 emissions in the leading resource-rich nations from 1996 to 2017. Their findings confirm that GPR is associated with a drop in CO2 emissions. Furthermore, Zhao et al. (2021) found that GPR has an unequal effect on CO2 emissions, specifically in the BRICS region. Conversely, Cui et al. (2024)

employed sophisticated econometric methods, including CS-ARDL, FMOLS, DOLS, and AMG, to conduct a study in the BRICS nations between 1992 and 2021. Environmental degradation increases in tandem with geopolitical danger, according to the study. Similarly, Li et al. (2024) discovered that, over time, higher emissions of carbon are associated with geopolitical risk in 38 chosen countries. In addition, according to Hunjra et al. (2024), heightened geopolitical danger causes a spike in CO2 emissions and the EF of 21 selected states. In addition, Wang et al. (2022) determined that the govt. of China can successfully consider GPR to control CO2 emissions by boosting environmentally friendly investments and implementing ecological strategies.

Financial Inclusion and CO2 Emission Nexus

Financial inclusion (FNI) is a fundamental element of the economy that is under constant consideration (Sohail et al.,2019). Energy-efficient technologies, enhanced environmental regulations, and readily accessible lending at reduced rates are just a few of the numerous ways in which financial growth exhibit a beneficial influence on our planet (Zaidi et al., 2019; Tanchangya et al.,2024; Ridwan & Hossain, 2024). Raihan et al. (2024c) interpret the effects of financial integration on the release of CO2 in the G-7 zone. According to the ARDL model, the availability of financial resources causes a surge in pollutions level. In addition, Ahmad et al. (2022) deployed the link between FNI and CO2 emissions in BRICS nations and concluded that FNI is a contributing cause for ecological degradation. Hussain et al. (2024) implemented principal component analysis (PCA) to determine that FNI had a detrimental effect on CO2 emissions in the short term but an advantageous impact in the long run in 26 Asian nations. In contrast, Du et al. (2022) utilized several techniques to look at the association between FNI and CO2 emissions. Their study demonstrated that FNI had a destructive association with CO2 emissions, thereby improving the natural well-being of selected developing countries. Renzhi and Baek (2020) determined that FNI is reducing CO2 emissions and made the case that raising environmental consciousness might be an effective way to lessen the adverse impacts of financial growth. According to the AMG's findings, it lowers CO2 emissions, which greatly enhances environmental sustainability. To prevent the adverse impacts of financial openness and to safeguard biodiversity, policymakers should improve the standards of their organizations in the MENA region (Boussaidi and Hakimi, 2024).

AI and CO2 Emission Nexus

To "promote a low-carbon in industry and consistently boost the carbon neutralization of carbon peaks," as well as to help achieve the "double carbon goal," it is imperative that artificial intelligence (AI) be promoted (Xi, 2022; Ridwan et al.,2024e; Rahman et al.,2024). Research on the possible effects of artificial intelligence (AI) on CO2 emissions has begun to emerge as the world undergoes transformation and experiences new kinds of advances in technology. For example, Dong et al. (2024) used dynamic panel data from 30 provinces in mainland China covering the years 2006 to 2019 to build econometric models with the goal of examining the impacts and underlying causes of AI on CO2 emissions. Empirical evidence shows that using AI significantly reduces CO2 emissions. Chen et al. (2022) discovered actual proof indicating that the use of robots greatly decreases CO2 emissions in China's industrial sector. Additionally, Ochieng et al. (2024) have developed an approach that employs robots to monitor and reduce CO2 emissions. Some other authors like Shiam et al.(2024a), Rana et al.(2024), Ferdous et al.(2023), Shiam et al.(2024b), Arif et al.(2024),also concluded similar findings. The system predicts emissions, offers methods for cutting them, and detects pollution using drones and other ecologically conscious sensors. Liu et al. (2023) demonstrated the influence of AI on carbon footprint between 2005 and 2016, leveraging the STIRPAT model. The study's findings reveal that the use of AI

significantly mitigates CO₂ releases, as evidenced by several scientific articles regarding AI and robotics in this sector.

Renewable Energy Use and CO₂ Emission Nexus

Currently, multiple scholars are investigating the urgent connection between the usage of renewable energy (REN) and the release of CO₂. In order to lower emissions and improve the surroundings, it is crucial to promote alternative power sources for example- sunlight, biogas, geothermal energy, wind energy, and hydroelectric (Jabeen et al., 2020; Atasoy et al., 2022b; Onwe et al., 2024; Raihan et al., 2024e). Ahmad et al. (2024a) made use of the ARDL bound test to assess China's carbon neutrality. They showed that a 1% consumption in REN application should cause a 0.03% decline in CO₂ pollution over time. Byaro et al. (2023) conducted an evaluation of the association between REN consumption and environmental harm in 48 sub-Saharan African states. For their analysis, they used categorized panel quantile regression. Research has demonstrated that using renewable energies reduces environmental harm on several levels. Additionally, Rahman and Alam (2022) look to see if using renewable energy can lower Bangladesh's CO₂ emissions. The study used the PMG and NARDL approaches, and its conclusions illustrate that harnessing sustainable power helps Bangladesh reduce its CO₂ emissions. Similarly, Raihan et al. (2022a) in China, Isik et al. (2024) in 27 OECD countries, and Kwilinski et al. (2024) in the EU transportation sector expressed the same conclusion. However, Rehman et al. (2023) researched the worldwide influence of nuclear power and REN on CO₂ emissions from 1985 to 2020. The outcomes demonstrate that the adoption of REN does not have the ability to alter the levels of CO₂ emissions either in the long run or in the short run. Shang et al. (2024) found a U-shaped link between environment friendly energy and pollutions when examining China's REN and CO₂ pollutions from 1995 to 2020.

Literature Gap

The work observes that no prior research has looked at the BRICS countries in extensive detail. However, a limited number of studies have explored the connection among GDP expansion, the utilization of green power, and CO₂ emissions. By adding new distinct variables, such as financial inclusion, geopolitical risk, and AI innovation, this analysis adds to the body of expertise. We found that the majority of earlier studies had difficulty drawing meaningful results. Furthermore, there is a dearth of research on environmental damage, especially concerning the sophisticated variables of AI innovation and financial inclusion, which have the potential to foster green development and reduce carbon pollution. As a result, this study examines the most recent data for the BRICS states, providing a longer time frame and comprehensive insights into past carbon emissions patterns among the countries. By concentrating on these important factors, this study ultimately seeks to improve understanding of how the BRICS nations contribute to their economic success and ecosystem health.

Methodology

Data and Variables

The inquiry used sophisticated statistical approaches to understand the complex correlation between the selected factors. The study's dependent variable, CO₂, came from the reliable WDI. The WDI (2022) also provided data for GDP and renewable energy utilization, while reputable sources such as Our World in Data, the GPR Index,

and Global Financial Development provided information on AI innovation, geopolitical risk, and financial inclusion. Table 1 provides a thorough summary of all the variables examined, along with definitions, sources, and units of measurement.

Table 1. Variable and sources of data

Variables	Description	Logarithmic Form	Unit of Measurement	Source
CO ₂	CO ₂ Emission	LCO ₂	CO ₂ Emission (kt)	WDI
GDP	Gross Domestic Product	LGDP	GDP per capita (current US\$)	WDI
GPR	Geopolitical Risk	LGPR	Geopolitical Risk Index	GPR Index
FNI	Financial Inclusion	LFNI	Automated teller machines (ATMs) (per 100,000 adults)	Global Financial Development
AI	AI Innovation	LAI	Annual patent applications related to AI	Our World in Data
REN	Renewable Energy Use	LREN	Renewable Energy Consumption (% of total final energy consumption)	WDI

Theoretical Framework

Cobb and Douglas (1928) statistically examined the Cobb-Douglas production function, commonly adopted to illustrate the association concerning input and output components. The primary goal is to conduct a deeper analysis of the complicated relationship between the utilization of clean energy, GDP growth, financial inclusion, geopolitical risk, and AI advancements, and their impact on CO2 pollutions in BRICS area. Equation (1) depicts the structure of the Cobb-Douglas production function.

Here, Y_t indicates the GDP at time t . On the other hand, K_t represents capital at t time and L_t means effective labor at t time. Nowadays, ecological economics makes use of this function (Nicolle et al., 2023). Economic progress has been linked to CO2 emissions in the past (Mensah et al. 2019; Aye and Edoja, 2017). From here on out, the creation function can look like this:

Disruptions in energy supply due to global conflicts can push nations to depend more on carbon-intensive energy sources. Additionally, increasing access to finance can drive modernization and GDP growth in emerging nations, both of which can lead to higher carbon emissions. Now, the function can be present like-

In contrast, although growing use of green power promptly reduces the release of CO₂ by substituting fossil fuels with alternative sources such as wind and solar energy, AI has a varied impact on pollution levels.

The equation (5) represents the economic model and is clarified as the actual context in the next way:

In this case, $\partial_1, \partial_2, \partial_3, \partial_4, \partial_5, \partial_6$ used as the coefficients whereas, Z_0 and μ_t illustrate the intercept and error terms. Moreover, the logarithmic version of equation (5) can be presented like:

Because the coefficient indicates the elasticity, this formulation is more beneficial and eliminates the problem of multicollinearity (Akther et al., 2024; Sohail et al., 2018b).

Empirical Methodology

The cross-sectional hyperlink and panel data features point to a chance that the BRICS countries are dealing with a stationary mixed-order problem. Therefore, we employ the slope homogeneity test and CSD. In this endeavor, we need to validate the CSD and SH issues through cointegration analysis and first and second-generation panel unit root tests. We carefully considered each of these factors and selected the ARDL method. The research analyzed the estimations of DKSE, AMG, and CCEMG to assess robustness. This part provides a clear and brief description of the research findings, their interpretation, and any possible repercussions for the study.

Cross Sectional Dependence Test

If researchers ignore this issue and handle the cross-sections as isolated, CSD can result in distorted, deceptive, and contradicting results (Hoyos et al., 2006). The optimum test to utilize is the CSD test, even if a standard unit roots testing shows cross-sectional independence (Sahoo & Sethi, 2021). In order to investigate CSD, this study uses Pesaran's (2015) technique with full panel data and weakly exogenous components.

$$CSD = \sqrt{\frac{2T}{N(N-1)N} \left(\sum_{i=1}^{N-1} \sum_{m=i+1}^N \widehat{Corr}_{i,t} \right)} \dots \dots \dots \quad (7)$$

Slope Homogeneity Test

Slope heterogeneity (SH) must be considered when evaluating panel data (Voumik and Mimi, 2023; Mithun et al., 2023). Because cross-sections usually show similar features, panel data typically have consistent slopes so

addressing slope uniformity is essential (Ayad and Djedaiet, 2022). Following that, we apply in our work the SH test developed by Pesaran and Yamagata (2008). The SH is shown by Equation (8) as follows:

$$1. \quad \check{\Delta} = \sqrt{N} \left(\frac{N^{-1}S\% - k}{\sqrt{2k}} \right) \text{ and } \check{\Delta}_{adj} = \sqrt{N} \left(\frac{N^{-1}S\% - k}{\sqrt{\frac{2k(T-k-1)}{T+1}}} \right) \dots \dots \dots \quad (8)$$

Panel Unit Root Test

According to the scientific community, it is widely accepted that identifying the integration order of the series is a vital prerequisite for exploring any connections between variables (Voumik et al., 2023b; Ahmad et al., 2024b). Im et al. (2003) developed the initial IPS test, while Pesaran (2007) created the subsequent version of the CIPS test and the CADF unit root examinations. The IPS test can be represented in the following way:

The first generation of panel unit root testing overlooks heterogeneity, CSD implications, and over-rejection of null hypotheses (Choi, 2001). The purpose of the CIPS analysis is to take into consideration the possibility of CSD in the panel data, which, if left unchecked, could result in inaccurate inference (Polcyn et al., 2023). The CIPS test is conducted using Equation (10):

The CADF test has a strong relationship with the CIPS test and the equation is given below:

$$\Delta Y_{it} = \varphi_i + \rho i Y_{it-1} + \varphi i \bar{Y}_{t-1} + \sum_{j=1}^m \varphi_{ij} \bar{Y}_{t-1} + \sum_{j=1}^m \gamma_{ij} \Delta Y_{i,t-1} + \varepsilon_{it} \dots \dots \dots (11)$$

Panel Cointegration Test

The authors administer the cointegration test after completing the unit root assessments. In this investigation, we applied the second-generation panel cointegration approach to determine the cointegration relationships between the relevant variables (Westerlund, 2007). We generate statistics from the four-panel cointegration test.

$$G_t = \frac{1}{n} \sum_{i=1}^N \frac{T\alpha_i}{a_i(1)} \dots \dots \dots \quad (13)$$

In this case, mean group statistics are represented by G_t and G_a , and cointegration is symbolized by P_t and P_a .

Panel ARDL Framework

Pesaran et al. (2001) proposed the panel autoregressive distributed lag (ARDL) technique, which was adopted in this study due to its ability to handle variables that are either $I(0)$, $I(1)$, or a combination of both (Raihan et al., 2024e; Sohail et al., 2018a). The ARDL model is advantageous over models like OLS, VECM, and VAR because of its flexibility in defining lag lengths and its effectiveness in both short- and long-term estimations (Voumik and Ridwan, 2023). Although it operates differently from traditional cointegration methods, the ARDL model offers several advantages, such as its ability to address endogeneity by incorporating variable lag periods (Pesaran et al., 2001; Abir, 2024). A key strength of the model is its robustness in estimating systems with mixed levels of integration (Ullah et al., 2021; Ridzuan et al., 2023; Raihan et al., 2024f), enabling it to account for the integration properties of variables. This feature enhances the model's ability to reflect real-world dynamics and effectively capture complex temporal relationships, as noted by Raihan et al. (2024b).

$$\begin{aligned} \Delta LCO_{2it} = & \beta_{1i} + \gamma_{1i} LCO_{2i,t-1} + \gamma_{2i} LGDP_{i,t-1} + \gamma_{3i} LGPR_{i,t-1} + \gamma_{4i} LFNI_{i,t-1} + \gamma_{5i} LAI_{i,t-1} + \\ & \gamma_{6i} LREN_{i,t-1} + \sum_{j=1}^p \lambda_{1j} \Delta LCO_{2i,t-j} + \sum_{i=0}^q \lambda_{2i} \Delta LGDP_{i,t-j} + \sum_{i=0}^q \lambda_{3i} \Delta LGPR_{i,t-j} + \sum_{i=0}^q \lambda_{4i} \Delta LFNI_{i,t-j} + \\ & \sum_{i=0}^q \lambda_{5i} \Delta LAI_{i,t-j} + \sum_{i=0}^q \lambda_{6i} \Delta LREN_{i,t-j} + \varepsilon_{1i,t} \quad (16) \end{aligned}$$

Furthermore, this paradigm is useful in any situation where investigative series integration is involved (Voumik et al., 2023c). When series variables are cointegrated, we can evaluate the short-run effects of GDP, AI innovation, GPR, FNI, and REN on CO2 emissions using an error-correcting mechanism (ECM). The ECM, defined as Eq. (17), used for long-term link between each factor.

$$\begin{aligned} \Delta LCO_{2it} = & \sum_{j=1}^{p-1} \alpha_{1ij} \Delta LCO_{2i,t-j} + \sum_{i=0}^{q-1} \alpha_{2ij} \Delta LGDP_{i,t-j} + \sum_{i=0}^{q-1} \alpha_{3ij} \Delta LGPR_{i,t-j} + \sum_{i=0}^{q-1} \alpha_{4ij} \Delta LFNI_{i,t-j} + \\ & \sum_{i=0}^{q-1} \alpha_{5ij} \Delta LAI_{i,t-j} + \sum_{i=0}^{q-1} \alpha_{6ij} \Delta LREN_{i,t-j} + \mu_{1i} ECT_{1,it-1} + \varepsilon_{1i,t} \quad (17) \end{aligned}$$

Robustness Check

We found out how stable the model was by comparing the effects of time-dependent parts on the environment using the DKSE created by Driscoll and Kraay (1998), the AMG (Bond & Eberhardt, 2009), and the CCEMG created by Pesaran (2006) in our study. We use DKSE in CSD problems because it is heteroscedastic, autocorrelation-consistent, and resistant to typical forms of CSD (Hoechle, 2007). Due to their consideration of the correlation among panel members, the AMG and CCEMG estimators are both resistant to CSD (Ng et al., 2020). Furthermore, according to Kapetianos et al. (2011), the CCEMG approach is resilient to structural fractures and non-stationary prevalent elements that go unnoticed.

Results and Discussion

Based on a dataset encompassing the BRICS countries from 1996 to 2019, Table 1 showcases the statistical findings for several normality metrics, such as skewness, probability, kurtosis, and the Jarque-Bera test. Each variable has 100 observations. Highlighted are the descriptive statistics for the following seven variables: LCO₂, LGDP, LGPR, LFNI, LAI, and LREN. The table indicates that all variables have positive means,

except LGPR. In addition, almost all of the parameters have relatively low standard deviations, suggesting that the data points are somewhat shifting over time and clustered around the mean. Most variables show positive skewness, except for LCO2, which is positively skewed. Furthermore, the Jarque-Bera test was utilized to verify the level of normality of each factor in this investigation. This type of test is suitable as it takes into account inconsistencies related to both skewness and kurtosis.

Table 2. Summary statistics of variables

Statistic	LCO2	LGDP	LGPR	LFNI	LAI	LREN
Mean	14.01781	8.744605	-1.829589	3.868414	3.054113	2.772809
Median	14.25714	8.808211	-1.534152	4.028851	3.113269	2.685356
Maximum	16.19161	9.22577	0.14121	5.222552	3.89182	3.890186
Minimum	12.55836	7.693433	-3.912023	2.581988	1.791759	1.156881
Std. Dev.	1.114343	0.391927	1.202445	0.800042	0.500842	0.952693
Skewness	0.475347	-1.100278	-0.176032	-0.011587	-0.405564	-0.454151
Kurtosis	2.113849	3.526287	1.548373	1.502311	2.437028	1.90319
Jarque-Bera	7.037847	21.33094	9.296546	9.348368	4.061935	8.450011
Probability	0.029631	0.000023	0.009578	0.009333	0.131209	0.014625
Sum	1401.781	874.4605	-182.9589	386.8414	305.4113	277.2809
Sum Sq. Dev.	122.9343	15.20711	143.1416	63.36673	24.83345	89.85468
Observations	100	100	100	100	100	100

Cross Sectional Dependence test

In Table 3, at the 1% level, all CSD statistic values are highly significant, and the p-value for each variable is less than 0.05. These findings reject the null hypothesis, which asserts no cross-sectional dependence between nations, for all factors. It indicates that an unforeseen incident in one of the chosen countries might have consequences for the other nations as well.

Table 3. Results of CSD test

Variables	CD-Statistics	P-Value
LCO ₂	10.13***	0.000
LGDP	13.26***	0.000
LGPR	7.68***	0.000
LFNI	11.62***	0.000
LAI	2.15**	0.025
LREN	4.17***	0.000

Table 4 summarizes the outcomes of the slope heterogeneity experiment. The calculated p-values of 0.000 reject the null hypothesis, stating that the slope coefficients are homogeneous, at the 1% significance level. The p-values reject the homogeneity hypothesis, demonstrating that multiple variables have distinct coefficients.

Table 4. Results of Slope Homogeneity test

SH tests	Δ statistic	P-value
$\bar{\Delta}$ test	4.065***	0.000
$\bar{\Delta}_{adj}$ test	5.062***	0.000

Note: "Null Hypothesis: Slope of the coefficients are homogenous"

Table 05 provides the unit root analysis conclusions. At the 1% significance threshold, the IPS test confirms that only LGPR and LAI are stationary at the level form I(0), whereas the other variables appear to exhibit significant and stationary patterns at the first difference I(1). The results of the CIPS test demonstrate that LAI is stationary at the 1% level and LGPR is stationary at the I(0) level at the 5% significance threshold. At the 1% significance level, the remaining factors are stationary at the initial difference, I(1). Similar to this, the CADF unit root examination finds that, at the 1% significance level, only LGPR and LAI are stationary at the level form I(0), but all the others start to become stationary at the first difference I(1). Furthermore, following the first difference, everything else is significant in the 1% range. Our results rule out the notion of a unit root problem by indicating that the variables reflect strong cointegration.

Table 5. Results of panel Unit root test

Variables	IPS		CIPS		CADF		Decision
	I(0)	I(1)	I(0)	I(1)	I(0)	I(1)	
LCO2	-1.554	-3.950***	-2.183	-2.842***	-1.029	-3.053***	I(1)
LGDP	-0.018	-3.041***	-2.045	-3.651***	-0.764	-3.201***	I(1)
LGPR	-4.098***	-6.383***	-2.524**	-5.296***	-3.021***	-5.064***	I(0)
LFNI	-0.121	-3.132***	-2.225	-3.707***	-1.552	-3.881***	I(1)
LAI	-3.933***	-7.003***	-3.071***	-5.323***	-2.980***	-3.871***	I(0)
LREN	-1.535	-4.031***	-1.750	-3.226***	-0.780	-4.586***	I(1)

The Westerlund (2007) cointegration assessment evaluates long-term relationships between variables in Table 06 using four test statistics (Gt, Ga, Pt, and Pa). P-values less than 0.05 for the Gt and Pt test statistics partially confirm the null hypothesis, suggesting cointegration and a consistent, persistent connection between the variables in the panel dataset.

Table 6. Results of panel Cointegration test

Statistics	G _t	G _a	P _t	P _a
Value	-3.761***	-6.570**	-4.904**	-3.877***
Z-Value	-1.872	1.901	2.087	1.704
P-Value	0.001	0.017	0.043	0.001

The Panel ARDL model's results, presented in Table 07, demonstrate the intricate dynamics influencing the BRICS region's carbon pollution. In terms of LGDP, the short-term coefficient is 0.3017 while the long-run coefficient is -0.4131, and both are statistically significant at conventional levels. This suggests that economic expansion alone contributes to environmental degradation in this setting. Our implications are agreed by Addai et al. (2023) in Eastern Europe, Syed et al. (2022) in BRICST, Ridwan et al.(2024d) within USA, Gessesse and He (2020) in China, Rahman et al.(2022) in Bangladesh, Raihan et al.(2024h) within Bangladesh, Raihan et al.(2024d) in Indonesia and Kongkuah (2021) in OECD economies. Furthermore, Minh et al. (2023) demonstrate a link within GDP development and CO2 emissions, which declines in Vietnam beyond a specific

threshold. Similarly, LGPR has a positive association with LCO2 in both periods. In the short run, the coefficient has a positive value of 0.0206, and in the long run, the value is 0.1362. The variable is significant because its p value is less than the conventional level for both periods. Our results align with Dun and Wang (2023) in China, Adedoyin et al. (2020) in EU countries, and Gyamfi et al. (2021) in E-7 zones. In contrast, in the short and long terms, there is a negative link between LFNI and LCO2. The short-term is insignificant as the p value is 0.0993, and the long-term results are significant as the p value is 0.0006. These findings demonstrate that financial accessibility has a positive effect on the BRICS ecosystem. For every 1% increase in LFNI, LCO2 reduces by 0.0472% in the near term and 0.1061% in the long term. Usman et al. (2021) found support for this conclusion in the 15 highest emitting countries, Saqib et al. (2023) in emerging economies, Raihan et al.(2022b) within USA and Tamazian and Rao (2010) in transitional countries. But Musah (2021) found that financial inclusion causes more carbon emissions in Ghana.

Similarly, there is an obvious connection between AI innovation and the environment, as evidenced by the beneficial relationship observed between LCO2 and LAI across both short and long periods. Specifically, a 1% expansion of LAI will cut LCO2 by 0.0094% in the short term and by 0.1221% in the long term. These results imply that utilization of modern AI technology could boost ecological conditions in both terms, and the results are significant in long terms and insignificant in short terms. This result is supported by Ridwan et al.(2024b) in USA, Ridwan et al.(2024c) in G-7 countries Akther et al.(2024) in USA, Bala et al. (2024) in G-7 countries, Abir et al.(2024) in USA, Shiam et al.(2024c) in Nordic area and Hossain et al.(2024) within Nordic region. Mor et al. (2021) studied in the Indian agricultural sector is consistent with these findings. Chen et al. (2022) discovered that the use of industrial robots in a variety of industries can minimize the ecological impact, particularly across 72 nations. By using artificial intelligence (AI), humans can better manage climate change and achieve sustainability while using natural assets (Habila et al., 2023; Faruk et al.,2023). In both the short and long term, the table demonstrates an inverse relationship between LREN and LCO2.

Table 7. Results of Panel ARDL test

Variable	Coefficient	Std. Error	t-Statistic	Prob.*
Long-run Estimation				
LGDP	0.4131	0.0734	5.6323	0.0000
LGPR	0.1362	0.0581	2.3438	0.0227
LFNI	-0.1061	0.0291	-3.6655	0.0006
LAI	-0.1221	0.0445	-2.7411	0.0082
LREN	-0.8690	0.1056	-8.2326	0.0000
Short-run Estimation				
COINTEQ01	-0.1535	0.0807	-2.9021	0.0624
D(LCO2(-1))	-0.0050	0.0670	-1.0751	0.0404
D(LGDP)	0.3017	0.1345	2.2433	0.0289
D(LGPR)	0.0206	0.0082	2.5010	0.0154
D(LFNI))	-0.0472	0.0894	-1.5284	0.0993
D(LAI)	-0.0094	0.0054	-1.7437	0.0868
D(LREN)	-0.5075	0.3068	-3.6540	0.0038
C				

The long-term and short-term results reveal statistical significance, as the p value is less than the conventional thresholds. Over time, there will be a 0.8690% reduction in LCO₂, and in a short time, there will be a reduction of 0.5075% for every 1% increase in LREN. In particular, the effect indicates that consumption of green energy reduces emissions. The findings of Aziz et al. (2021) for MINT countries, Raihan et al.,(2024f), Islam et al.(2024) in top nuclear energy consuming area, Atasoy et al.(2022a) within USA, Raihan et al. (2024g), Mahmood et al. (2019) for Pakistan, and Attiaoui et al. (2017) for Africa align with our findings.

Table 8 uses three different estimate approaches (DKSE, AMG, and CCEMG) to establish the consistency of the ARDL results. For each method, the estimated LGDP coefficients are 0.472, 0.456, and 0.174, respectively, and all estimators' exhibit significance at the 1% level. These findings are consistent with the short- and long-term outcomes of the ARDL paradigm, indicating that economic growth has had a detrimental influence on natural health in the BRICS countries. In a similar vein, the LGPR coefficient indicates negative correlations in the AMG approach but positive correlations in the DKSE and CCEMG calculations. In particular, LCO₂ increases by 0.820% in DKSE and 0.034% in CCEMG for each percent rise in risk related to geopolitics, but AMG forecasts a 0.923% drop in carbon emissions.

Table 8. Results of Robustness check

VARIABLES	(1) DKSE	(2) AMG	(3) CCEMG
LGDP	0.174*** (0.263)	0.456*** (0.099)	0.472*** (0.158)
LGPR	0.820*** (0.038)	-0.923*** (0.013)	0.034** (0.059)
LFNI	-0.108*** (0.107)	-0.116*** (0.038)	-0.178** (0.094)
LAI	-0.116*** (0.156)	-0.034** (0.078)	-0.027** (0.047)
LREN	-0.196** (0.085)	-0.469*** (0.090)	-0.292 (0.213)
Constant	14.22*** (2.632)	11.79*** (1.325)	9.670*** (2.021)
Observations	100	100	100
Number of groups	5	5	5
R-squared	0.971	0.988	0.864

Note: Standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1

In DKSE, AMG, and CCEMG, the LGPR factor is statistically significant at the 1% and 5% thresholds, accordingly. On the other hand, the opposite relationship between LFNI and LCO₂ suggests that ongoing financial inclusion has no adverse effects on the BRICS atmosphere. In the CCEMG estimation, the LFNI coefficient is significant at the level of 5%, but in other approaches, it is significant at the 1% threshold. All three investigations have found a negative correlation between LCO₂ and LAI. In the AMG and CCEMG analyses, the LAI coefficient is significant at the 5% level; in the DKSE test, it is significant at the 1% range. According to such outcomes, a 1% increase in AI innovation cuts LCO₂ by 0.116%, 0.034%, and 0.027%, respectively, implying that higher AI innovation contributes to the BRICS ecosystems. Similarly, favorable

interactions between LCO2 and LREN illustrate that greater utilization of clean energy has an excellent consequence for biodiversity in the regions under investigation. In the CCEMG estimation, the LREN variable is not significant, but it is significant at the 1% level in AMG and the 5% level in DKSE. These findings verify the implications of the experiment and reinforce the ARDL model, which was the main estimating approach deployed.

Conclusion and Policy Recommendation

This investigation looked at the complex relationship among CO2 emissions, renewable energy use, geopolitical risk, financial inclusion, AI innovation, and GDP expansion in the BRICS nations between 1996 and 2022. The research sought to determine the key factors changing environmental conditions in this region by utilizing the Cobb-Douglas production function and advanced econometric methodologies. To make sure that there are no unit root problems in the dataset and to tackle all possible empirical difficulties, our study performed both first-generation and second-generation panel unit root examinations. Panel cointegration tests further highlighted the variables' dependency and validated their long-term cointegration. This investigation also utilized the ARDL framework to capture the short- and long-term connection between the selected variables. We fully investigated the correlations between dependent and independent variables using the DKSE, AMG, and CCEMG techniques to validate strong conclusions. The results revealed that while economic expansion and geopolitical risk raise CO2 emissions, financial inclusion, AI innovation, and the use of clean energy had a beneficial effect on the environmental sustainability of the BRICS blocks. Through the use of modern technology and inclusive growth in finances, this evaluation underscored the importance of the diverse elements influencing environmental sustainability in the BRICS region. In order to ensure ecological viability, the paper advocates the adoption of fresh political approaches that support sustainable growth in GDP and AI technology adoption. In the end, this research provides a basis for informed decisions aimed at improving environmental preservation and the implementation of green energy techniques, thereby increasing resilience and prosperity in this region.

This study's findings highlight several policy suggestions for the BRICS countries as they navigate the complicated link between economic growth, geopolitical risks, and environmental sustainability. It is important to recognize the strong association between GDP and CO2 emissions, which highlights the necessity for implementing policies that separate economic growth from carbon emissions. This could include encouraging the adoption of green technologies, enhancing energy efficiency, and advocating for environmental friendly industrial practices. Given the negative effects of geopolitical risks on CO2 emissions, it is critical for BRICS policymakers to prioritize diplomatic engagement and conflict resolution in order to promote geopolitical stability. Additionally, they should focus on implementing domestic policies that address the environmental consequences of these risks. In addition, the research deploys the requirement of AI innovation in addressing carbon emissions. It recommends that BRICS governments focus on investing in AI-driven solutions to optimize energy usage and minimize environmental impact in different industries. Moreover, the significant influence of accessibility in finances on decreasing CO2 pollutions indicates that by increasing access to financial services, more individuals can engage in environmentally conscious investments and embrace sustainable behaviors. This is especially crucial for marginalized communities. Policies that promote financial literacy, microfinance, and digital banking can have a significant impact on fostering an inclusive green economy. The significant decrease in CO2 emissions linked to the use of renewable energy emphasizes the urgency for BRICS nations to foster their shift to sustainable energy resources. This may include the consideration of enhanced subsidies for renewable energy projects, the implementation of more stringent regulations on fossil fuel consumption, and the allocation of resources towards the development of

infrastructure that facilitates the seamless integration of renewable energy into national grids. Furthermore, the validation of these findings using rigorous econometric techniques indicates that these policy measures are not only effective, but also able to withstand various economic conditions and political landscapes. By embracing a comprehensive approach that incorporates these valuable insights, BRICS countries have the potential to successfully tackle the intertwined issues of maintaining economic growth and mitigating climate change. This can be used as a model for other nations to emulate on a global scale. It is crucial for BRICS policymakers to work together, think creatively, and put these strategies into action to secure a stable and strong future for their economies and the global environment.

Declaration

Acknowledgment: N/A

Funding: N/A

Conflict of interest: N/A

Ethics approval/declaration: N/A

Consent to participate: N/A

Consent for publication: N/A

Data availability: Available on request

Author's contribution: Sarder Abdulla Al Shiam led the conceptualization, methodology, and manuscript preparation. Shake Ibna Abir was involved in data collection, analysis, and drafting sections of the manuscript. Shaharina Shoha contributed to the literature review and manuscript drafting. Hemel Hossain assisted with experimental work and data validation. Md Shah Ali Dolon and Hasibur Rahman supported data interpretation and critical revisions of the manuscript. Shaharina Shoha provided technical oversight and guidance, and Afsana Akhter contributed to final editing and proofreading. Mohammad Ridwan supervised the research, ensured the integrity of the work, and finalized the manuscript for submission.

Reference

Abbas, Q., HongXing, Y., Ramzan, M. *et al.* BRICS and the climate challenge: navigating the role of factor productivity and institutional quality in CO₂ emissions. *Environ Sci Pollut Res* **31**, 4348–4364 (2024). <https://doi.org/10.1007/s11356-023-31321-x>

Abid M (2016) Impact of economic, financial, and institutional factors on CO₂ emissions: evidence from Sub-Saharan Africa economies. *Util Policy* **41**:85–94

Abir, S. I., Shoha, S., Al Shiam, S. A., Dolon, M. S. A., Bala, S., Hossain, H., ... & Bibi, R. (2024). Enhancing Load Capacity Factor: The Influence of Financial Accessibility, AI Innovation, and Institutional Quality in the United States. <https://doi.org/10.56556/jescae.v3i4.979>

Abir, Shake Ibna, (2024) “Parameter Estimation for Stroke Patients Using Brain CT Perfusion Imaging with Deep Temporal Convolutional Neural Network,” Masters Theses & Specialist Projects, Paper 3755.

Abor JY, Amidu M, Issahaku H (2018) Mobile telephony, financial inclusion, and inclusive growth. *J Afr Bus* **19**(3):430–453

Addai, K., Serener, B., & Kirikkaleli, D. (2023). Can environmental sustainability be decoupled from economic growth? Empirical evidence from Eastern Europe using the common correlated effect mean group test. *Regional Sustainability*, 4(1), 68-80. <https://doi.org/10.1016/j.regsus.2023.03.003>

Adedoyin, F. F., Alola, A. A., & Bekun, F. V. (2020). An assessment of environmental sustainability corridor: the role of economic expansion and research and development in EU countries. *Science of the total environment*, 713, 136726. <https://doi.org/10.1016/j.scitotenv.2020.136726>

Ahmad, M., Ahmed, Z., Bai, Y., Qiao, G., Popp, J., & Oláh, J. (2022). Financial inclusion, technological innovations, and environmental quality: Analyzing the role of green openness. *Frontiers in Environmental Science*, 10, 851263. <https://doi.org/10.3389/fenvs.2022.851263>

Ahmad, S., Raihan, A., & Ridwan, M. (2024a). Role of economy, technology, and renewable energy toward carbon neutrality in China. *Journal of Economy and Technology*. <https://doi.org/10.1016/j.ject.2024.04.008>

Ahmad, S., Raihan, A., & Ridwan, M. (2024b). Pakistan's trade relations with BRICS countries: trends, export-import intensity, and comparative advantage. *Frontiers of Finance*, 2(2). <https://doi.org/10.59429/ff.v2i2.6551>

Akhter, A., Al Shiam, S. A., Ridwan, M., Abir, S. I., Shoha, S., Nayeem, M. B., ... & Bibi, R. (2024) Assessing the Impact of Private Investment in AI and Financial Globalization on Load Capacity Factor: Evidence from United States. <https://doi.org/10.56556/jescae.v3i3.977>

Akther, T., Selim, M. M. I., Hossain, M. S., & Kibria, M. G. (2024). Synergistic role of agriculture production, fertilizer use, tourism, and renewable energy on CO2 emissions in South Asia: A static and dynamic analysis. *Energy Nexus*, 14, 100287. <https://doi.org/10.1016/j.nexus.2024.100287>

Al Shiam, S. A., Ridwan, M., Hasan, M. M., Akhter, A., Arefeen, S. S., Hossain, M. S., ... & Shoha, S. (2024). Analyzing the Nexus between AI Innovation and Ecological Footprint in Nordic Region: Impact of Banking Development and Stock Market Capitalization using Panel ARDL method. <https://doi.org/10.56556/jescae.v3i3.973>

Anser, M.K., Syed, Q.R. & Apergis, N. Does geopolitical risk escalate CO₂ emissions? Evidence from the BRICS countries. *Environ Sci Pollut Res* 28, 48011–48021 (2021). <https://doi.org/10.1007/s11356-021-14032-z>

Arif, M., Hasan, M., Al Shiam, S. A., Ahmed, M. P., Tusher, M. I., Hossan, M. Z., ... Imam, T. (2024). Predicting Customer Sentiment in Social Media Interactions: Analyzing Amazon Help Twitter Conversations Using Machine Learning. *International Journal of Advanced Science Computing and Engineering*, 6(2), 52–56. <https://doi.org/10.62527/ijasce.6.2.211>

Atasoy, F. G., Atasoy, M., Raihan, A., Ridwan, M., Tanchangya, T., Rahman, J., ... & Al Jubayed, A. (2022a). Factors Affecting the Ecological Footprint in The United States: The Influences of Natural Resources, Economic Conditions, Renewable Energy Sources, and Advancements in Technology. *Journal of Environmental and Energy Economics*, 1(1), 35-52.

Atasoy, F. G., Atasoy, M., Raihan, A., Ridwan, M., Tanchangya, T., Rahman, J., ... & Al Jubayed, A. (2022b). An Econometric Investigation of How the Usage of Non-Renewable Energy Resources Affects the Load Capacity Factor in the United States. *Journal of Environmental and Energy Economics*, 1(2), 32-44.

Attiaoui I, Toumi H, Ammour I (2017) Causality links among renewable energy consumption, CO₂ emissions, and economic growth in Africa: evidence from a panel ARDL-PMG approach. *Environ Sci Pollut Res* 24:13036–13048. <https://doi.org/10.1007/s11356-017-8850-7>

Ayad, H., Djedaiet, A. Does the unemployment rate matter for environmental issues in the G7 nations? New testing for the environmental Phillips curve using the load capacity factor. *Environ Dev Sustain* (2024). <https://doi.org/10.1007/s10668-024-04956-0>

Aye GC, Edoja PE (2017) Effect of economic growth on CO2 emission in developing countries: evidence from a dynamic panel threshold model. *Cogent Econ Fin* 5(1):1379239

Azam, M. Relationship between energy, investment, human capital, environment, and economic growth in four BRICS countries. *Environ Sci Pollut Res* 26, 34388–34400 (2019). <https://doi.org/10.1007/s11356-019-06533-9>

Aziz, N., Sharif, A., Raza, A. *et al.* The role of natural resources, globalization, and renewable energy in testing the EKC hypothesis in MINT countries: new evidence from Method of Moments Quantile Regression approach. *Environ Sci Pollut Res* 28, 13454–13468 (2021). <https://doi.org/10.1007/s11356-020-11540-2>

Bai, X. (2021). Tanker freight rates and economic policy uncertainty: a wavelet-based copula approach. *Energy*, 235, 121383. <https://doi.org/10.1016/j.energy.2021.121383>

Bala, S., Al Shiam, S. A., Arefeen, S. S., Abir, S. I., & Hossain, H. (2024). Measuring How AI Innovations and Financial Accessibility Influence Environmental Sustainability in the G-7: The Role of Globalization with Panel ARDL and Quantile Regression Analysis. <https://doi.org/10.56556/gssr.v3i4.974>

Baskaya, M. M., Samour, A., & Tursoy, T. (2022). THE FINANCIAL INCLUSION, RENEWABLE ENERGY AND CO 2 EMISSIONS NEXUS IN THE BRICS NATIONS: NEW EVIDENCE BASED ON THE METHOD OF MOMENTS QUANTILE REGRESSION. *Applied Ecology & Environmental Research*, 20(3).

Bond S, Eberhardt M (2009) 'Cross-section dependence in nonstationary panel models: a novel estimator', paper presented at the Nordic econometrics conference in Lund

Boussaïdi, R., & Hakimi, A. (2024, January). Financial inclusion, economic growth, and environmental quality in the MENA region: What role does institution quality play?. In *Natural Resources Forum*. Oxford, UK: Blackwell Publishing Ltd. <https://doi.org/10.1111/1477-8947.12406>

Byaro, M., Nkonoki, J. & Mafwolo, G. Exploring the nexus between natural resource depletion, renewable energy use, and environmental degradation in sub-Saharan Africa. *Environ Sci Pollut Res* 30, 19931–19945 (2023). <https://doi.org/10.1007/s11356-022-23104-7>

Chen P, Gao J, Ji Z *et al* (2022) Do artificial intelligence applications affect carbon emission performance?—Evidence from panel data analysis of Chinese cities. *Energies* 15(15):5730. <https://doi.org/10.3390/en15155730>

Chen Y, Cheng L, Lee C-C (2022) How does the use of industrial robots affect the ecological footprint? International evidence. *Ecol Econ* 198:107483. <https://doi.org/10.1016/j.ecolecon.2022.107483>

Choi, I. (2001). Unit root tests for panel data. *Journal of international money and Finance*, 20(2), 249-272.

Cobb, C. W., & Douglas, P. H. (1928). A theory of production.

Cui, X., Wang, W., Işık, C. *et al.* Do geopolitical risk and economic policy uncertainty cause CO₂ emissions in BRICS? The role of institutional quality and energy productivity. *Stoch Environ Res Risk Assess* 38, 1685–1699 (2024). <https://doi.org/10.1007/s00477-023-02646-3>

Dandan Dou & Liying Li (2022) Does sustainable financial inclusion and energy efficiency ensure green environment? Evidence from B.R.I.C.S. countries, *Economic Research-Ekonomska Istraživanja*, 35:1, 5599-5614, <https://doi.org/10.1080/1331677X.2022.2032785>

De Hoyos, R. E., & Sarafidis, V. (2006). Testing for cross-sectional dependence in panel-data models. *The stata journal*, 6(4), 482-496. <https://doi.org/10.1177/1536867X0600600403>

Destek, M.A., Shahbaz, M., Okumus, I. *et al.* The relationship between economic growth and carbon emissions in G-7 countries: evidence from time-varying parameters with a long history. *Environ Sci Pollut Res* **27**, 29100–29117 (2020). <https://doi.org/10.1007/s11356-020-09189-y>

Dong, M., Wang, G. & Han, X. Artificial intelligence, industrial structure optimization, and CO₂ emissions. *Environ Sci Pollut Res* **30**, 108757–108773 (2023). <https://doi.org/10.1007/s11356-023-29859-x>

Dou Y, Li Y, Dong K, Ren X (2022) Dynamic linkages between economic policy uncertainty and the carbon futures market: does Covid-19 pandemic matter? *Resour Policy* 5:102455. <https://doi.org/10.1016/j.resourpol.2021.102455>

Driscoll, J. C., & Kraay, A. C. (1998). Consistent covariance matrix estimation with spatially dependent panel data. *Review of economics and statistics*, 80(4), 549-560. <https://doi.org/10.1162/003465398557825>

Du, Q., Wu, N., Zhang, F. *et al.* Impact of financial inclusion and human capital on environmental quality: evidence from emerging economies. *Environ Sci Pollut Res* **29**, 33033–33045 (2022). <https://doi.org/10.1007/s11356-021-17945-x>

Du, Y., & Wang, W. (2023). The role of green financing, agriculture development, geopolitical risk, and natural resource on environmental pollution in China. *Resources Policy*, 82, 103440. <https://doi.org/10.1016/j.resourpol.2023.103440>

Faruk, O., Hasan, S. E., Jubayer, A., Akter, K., Shiam, S. A. A., Rahman, K., Ali, M. Y., & Tufael. (2023). Microbial Isolates from Urinary Tract Infection and their Antibiotic Resistance Pattern in Dhaka city of Bangladesh. *Journal of Knowledge Learning and Science Technology* ISSN: 2959-6386 (online), 2(3), 76-87. <https://doi.org/10.60087/jklst.vol2.n3.p87>

Ferdous, J., Sunny, A. R., Khan, R. S., Rahman, K., Chowdhury, R., Mia, M. T., Shiam, A. A., & Mithun, M. H. (2023). Impact of Varying Synthetic Hormone on *Mystus cavasius* (Hamilton): Fertilization, Hatching, and Survival Rates. *Journal of Knowledge Learning and Science Technology* ISSN: 2959-6386 (online), 2(3), 88-105. <https://doi.org/10.60087/jklst.vol2.n3.p103>

Gessesse, A. T., & He, G. (2020). Analysis of carbon dioxide emissions, energy consumption, and economic growth in China.

Gyamfi, B. A., Adedoyin, F. F., Bein, M. A., Bekun, F. V., & Agozie, D. Q. (2021). The anthropogenic consequences of energy consumption in E7 economies: juxtaposing roles of renewable, coal, nuclear, oil and gas energy: evidence from panel quantile method. *Journal of Cleaner Production*, 295, 126373.

Habila, M. A., Ouladsmane, M., & Alothman, Z. A. (2023). Role of artificial intelligence in environmental sustainability. In *Visualization techniques for climate change with machine learning and artificial intelligence* (pp. 449-469). Elsevier. <https://doi.org/10.1016/B978-0-323-99714-0.00009-1>

Hai Ming, L., Gang, L., Hua, H., & Waqas, M. (2022). Modeling the influencing factors of electronic word-of-mouth about CSR on social networking sites. *Environmental Science & Pollution Research*, 29(44).

Hassan, S. U., Basumatary, J., & Goyari, P. (2024). Impact of governance and effectiveness of expenditure on CO₂ emission (air pollution): lessons from four BRIC countries. *Management of Environmental Quality: An International Journal*. <https://doi.org/10.1108/MEQ-12-2023-0424>

He, P., Ya, Q., Chengfeng, L., Yuan, Y., & Xiao, C. (2021). Nexus between environmental tax, economic growth, energy consumption, and carbon dioxide emissions: evidence from China, Finland, and Malaysia based on a Panel-ARDL approach. *Emerging Markets Finance and Trade*, 57(3), 698-712. <https://doi.org/10.1080/1540496X.2019.1658068>

Hoechle, D. (2007). Robust standard errors for panel regressions with cross-sectional dependence. *The stata journal*, 7(3), 281-312. <https://doi.org/10.1177/1536867X0700700301>

Hossain, M. S., Ridwan, M., Akhter, A., Nayeem, M. B., Choudhury, M. T. H., Asrafuzzaman, M., & Shoham, S. (2024). Exploring the LCC Hypothesis in the Nordic Region: The Role of AI Innovation, Environmental Taxes, and Financial Accessibility via Panel ARDL. <https://doi.org/10.56556/gssr.v3i3.972>

Hossain, M., Kuddus, M. A., Foysal, A. M., Sahriar Khan, R., Moniruzzaman, Mia, M. T., Rahman, K., Chowdhury, R., & Shiam, S. A. A. (2023). Climate Change and Current Adaptation Strategies in the Haor Areas. *Journal of Knowledge Learning and Science Technology* ISSN: 2959-6386 (online), 2(3), 230-241. <https://doi.org/10.60087/jklst.vol2.n3.p241>

Hunjra, A. I., Azam, M., Verhoeven, P., Taskin, D., & Dai, J. (2024). The impact of geopolitical risk, institutional governance and green finance on attaining net-zero carbon emission. *Journal of Environmental Management*, 359, 120927. <https://doi.org/10.1016/j.jenvman.2024.120927>

Hussain, S., Ahmad, T., Ullah, S., Rehman, A. U., & Shahzad, S. J. H. (2024). Financial inclusion and carbon emissions in Asia: Implications for environmental sustainability. *Economic and Political Studies*, 12(1), 88-104. <https://doi.org/10.1080/20954816.2023.2273003>

Im, K. S., Pesaran, M. H., & Shin, Y. (2003). Testing for unit roots in heterogeneous panels. *Journal of Econometrics*, 115(1), 53-74. [https://doi.org/10.1016/S0304-4076\(03\)00092-7](https://doi.org/10.1016/S0304-4076(03)00092-7)

İşik, C., Bulut, U., Ongan, S., Islam, H., & Irfan, M. (2024). Exploring how economic growth, renewable energy, internet usage, and mineral rents influence CO2 emissions: A panel quantile regression analysis for 27 OECD countries. *Resources Policy*, 92, 105025. <https://doi.org/10.1016/j.resourpol.2024.105025>

Islam, S., Raihan, A., Paul, A., Ridwan, M., Rahman, M. S., Rahman, J., ... & Al Jubayed, A. (2024). Dynamic Impacts of Sustainable Energies, Technological Innovation, Economic Growth, and Financial Globalization on Load Capacity Factor in the Top Nuclear Energy-Consuming Countries. *Journal of Environmental and Energy Economics*, 1-14. <https://doi.org/10.56946/jeee.v3i1.448>

Islam, S., Raihan, A., Ridwan, M., Rahman, M. S., Paul, A., Karmakar, S., ... & Al Jubayed, A. (2023). The influences of financial development, economic growth, energy price, and foreign direct investment on renewable energy consumption in the BRICS. *Journal of Environmental and Energy Economics*, 2(2), 17-28. <https://doi.org/10.56946/jeee.v2i2.419>

Jabeen G, Yan Q, Ahmad M, Fatima N, Jabeen M, Li H, Qamar S (2020) Household-based critical influence factors of biogas generation technology utilization: a case of Punjab province of Pakistan. *Renew Energy* 154:650–660

Kapetanios G, Pesaran MH, Yamagata T (2011) Panels with non-stationary multifactor error structures. *J Econom* 160(2):326–348

Khattak, S. I., Khan, A., & Hussain, K. (2024). Green technology innovations, natural gas and resource extraction strategies in BRICS: Modeling impacts on CO2 emission intensity. *Sustainable Futures*, 100227. <https://doi.org/10.1016/j.sfr.2024.100227>

Kongkuah, M., et al. (2021). The role of CO2 emissions and economic growth in energy consumption: Empirical evidence from Belt and Road and OECD countries. *Environmental Science and Pollution Research. Springer*, 28(18), 22488–22509. <https://doi.org/10.1007/s11356-020-11982-8>

Kwilinski, A., Lyulyov, O., & Pimonenko, T. (2024). Reducing transport sector CO2 emissions patterns: Environmental technologies and renewable energy. *Journal of Open Innovation: Technology, Market, and Complexity*, 10(1), 100217. <https://doi.org/10.1016/j.joitmc.2024.100217>

Li, D., Du, P., & He, H. (2022). Artificial Intelligence-Based Sustainable Development of Smart Heritage Tourism. *Wireless Communications and Mobile Computing*, 2022(1), 5441170. <https://doi.org/10.1155/2022/5441170>

Li, R., Wang, Q., & Guo, J. (2024). Revisiting the environmental Kuznets curve (EKC) hypothesis of carbon emissions: exploring the impact of geopolitical risks, natural resource rents, corrupt governance, and energy intensity. *Journal of Environmental Management*, 351, 119663. <https://doi.org/10.1016/j.jenvman.2023.119663>

Liu, J., Liu, L., Qian, Y., & Song, S. (2022). The effect of artificial intelligence on carbon intensity: evidence from China's industrial sector. *Socio-Economic Planning Sciences*, 83, 101002. <https://doi.org/10.1016/j.seps.2020.101002>

Mahmood, N., Wang, Z. & Hassan, S.T. Renewable energy, economic growth, human capital, and CO₂ emission: an empirical analysis. *Environ Sci Pollut Res* 26, 20619–20630 (2019). <https://doi.org/10.1007/s11356-019-05387-5>

Md Nasir Uddin Rana, Sarder Abdulla Al Shiam, Sarmin Akter Shochona, Md Rasibul Islam, Md Asrafuzzaman, Proshanta Kumar Bhowmik, Refat Naznin, Sandip Kumar Ghosh, Md Ariful Islam Sarkar, & Md Asaduzzaman. (2024). Revolutionizing Banking Decision-Making: A Deep Learning Approach to Predicting Customer Behavior. *Journal of Business and Management Studies*, 6(3), 21–27. <https://doi.org/10.32996/jbms.2024.6.3.3>

Mensah IA, Sun M, Gao C, Omari-Sasu AY, Zhu D, Ampimah BC, Quarcoo A (2019) Analysis on the nexus of economic growth, fossil fuel energy consumption, CO₂ emissions and oil price in Africa based on a PMG panel ARDL approach. *J Clean Prod* 228:161–174

Minh, T. B., Ngoc, T. N., & Van, H. B. (2023). Relationship between carbon emissions, economic growth, renewable energy consumption, foreign direct investment, and urban population in Vietnam. *Helion*, 9(6). <https://doi.org/10.1016/j.heliyon.2023.e17544>

Mithun, M. H., kar, A., Sunny, A. R., Billah, M., Sazzad, S. A., Salehin, S., Foysal, A. M., Jahan, N., Rahman, K., Shiam, A. A., Chowdhury, R., Arafat, J., & Baten, A. (2023). Assessing Impact of Microplastics on Aquatic Food System and Human Health. *Preprints*. <https://doi.org/10.20944/preprints202311.1092.v1>

Mngumi, F., Huang, L., Xiuli, G., & Ayub, B. (2024). Financial efficiency and CO₂ emission in BRICS. Does digital economy development matter?. *Helion*, 10(2). <https://doi.org/10.1016/j.heliyon.2024.e24321>

Mor S, Madan S, Prasad KD (2021) Artificial intelligence and carbon footprints: roadmap for Indian agriculture. *Strateg Chang* 30(3):269–280. <https://doi.org/10.1002/jsc.2409>

Musah, M. RETRACTED ARTICLE: Financial inclusion and environmental sustainability in Ghana: application of the dynamic ARDL estimator. *Environ Sci Pollut Res* 29, 60885–60907 (2022). <https://doi.org/10.1007/s11356-022-1>

Ng, CF., Choong, CK. & Lau, LS. Environmental Kuznets curve hypothesis: asymmetry analysis and robust estimation under cross-section dependence. *Environ Sci Pollut Res* 27, 18685–18698 (2020). <https://doi.org/10.1007/s11356-020-08351-w>

Nicolle, A., Cederros, D., Massol, O., & Schippers, E. J. (2023). Modeling CO₂ pipeline systems: An analytical lens for CCS regulation.

Nunes, A. M. M., Coelho Junior, L. M., Abrahão, R., Santos Júnior, E. P., Simioni, F. J., Rotella Junior, P., & Rocha, L. C. S. (2023). Public Policies for Renewable Energy: A Review of the Perspectives for a Circular Economy. *Energies*, 16(1), 485. <https://doi.org/10.3390/en16010485>

Ochieng, B., Onyango, F., Kuria, P., Wanjiru, M., Maake, B., & Awuor, M. (2024, May). AI-Driven Carbon Emissions Tracking and Mitigation Model. In *2024 IST-Africa Conference (IST-Africa)* (pp. 1-8). IEEE.

Onwe, J. C., Ridzuan, A. R., Uche, E., Ray, S., Ridwan, M., & Razi, U. (2024). Greening Japan: Harnessing Energy Efficiency and Waste Reduction for Environmental Progress. *Sustainable Futures*, 100302. <https://doi.org/10.1016/j.sfr.2024.100302>

Ozili PK (2019) Non-performing loans and financial development: new evidence. *J Risk Financ* 20(1):59–81

Pattak, D. C., Tahrim, F., Salehi, M., Voumik, L. C., Akter, S., Ridwan, M., ... & Zimon, G. (2023). The driving factors of Italy's CO₂ emissions based on the STIRPAT model: ARDL, FMOLS, DOLS, and CCR approaches. *Energies*, 16(15), 5845. <https://doi.org/10.3390/en16155845>

Pesaran MH (2006) Estimation and inference in large heterogeneous panels with a multifactor error structure. *Econometrica* 74(4):967–1012

Pesaran MH, Yamagata T (2008) Testing slope homogeneity in large panels. *Journal of Econometrics* 142(1):50–93. <https://doi.org/10.1016/j.jeconom.2007.05.010>

Pesaran, M. H. (2007). A simple panel unit root test in the presence of cross-section dependence. *Journal of applied econometrics*, 22(2), 265-312. <https://doi.org/10.1002/jae.951>

Pesaran, M. H. (2015). Testing weak cross-sectional dependence in large panels. *Econometric reviews*, 34(6-10), 1089-1117. <https://doi.org/10.1080/07474938.2014.956623>

Pesaran, M. H., Shin, Y., & Smith, R. J. (2001). Bounds testing approaches to the analysis of level relationships. *Journal of applied econometrics*, 16(3), 289-326. <https://doi.org/10.1002/jae.616>

Polcyn, J., Voumik, L. C., Ridwan, M., Ray, S., & Vovk, V. (2023). Evaluating the influences of health expenditure, energy consumption, and environmental pollution on life expectancy in Asia. *International Journal of Environmental Research and Public Health*, 20(5), 4000. <https://doi.org/10.3390/ijerph20054000>

Pradhan RP, Arvin MB, Nair MS, Hall JH, Bennett SE (2021) Sustainable economic development in India: The dynamics between financial inclusion, ICT development, and economic growth. *Technol Forecast Soc Chang* 169:120758

Rahman, J., Raihan, A., Tanchangya, T., & Ridwan, M. (2024). Optimizing the Digital Marketing Landscape: A Comprehensive Exploration of Artificial Intelligence (AI) Technologies, Applications, Advantages, and Challenges. *Frontiers of Finance*, 2(2). <https://doi.org/10.59429/ff.v2i2.6549>

Rahman, M. S., Ridwan, M., Raihan, A., Tanchangya, T., Rahman, J., Foisal, M. Z. U., ... & Islam, S. (2022). Nexus Between Agriculture, Economy, Energy Use, and Ecological Footprint Toward Sustainable Development in Bangladesh. *Journal of Environmental and Energy Economics*, 1(2), 18-31.

Rahman, M., Mahmood, A. (2022), Nexus between carbon emissions, economic growth, renewable energy use, urbanization, Industrialization, technological innovation, and forest area towards achieving environmental sustainability in Bangladesh. *Energy and Climate Change*, 3, 100080.

Raihan, A., Atasoy, F. G., Atasoy, M., Ridwan, M., & Paul, A. (2022b). The role of green energy, globalization, urbanization, and economic growth toward environmental sustainability in the United States. *Journal of Environmental and Energy Economics*, 1(2), 8-17. <https://doi.org/10.56946/jeee.v1i2.377>

Raihan, A., Bala, S., Akther, A., Ridwan, M., Eleais, M., & Chakma, P. (2024c). Advancing environmental sustainability in the G-7: The impact of the digital economy, technological innovation, and financial accessibility using panel ARDL approach. *Journal of Economy and Technology*. <https://doi.org/10.1016/j.ject.2024.06.001>

Raihan, A., Hasan, M. A., Voumik, L. C., Pattak, D. C., Akter, S., & Ridwan, M. (2024b). Sustainability in Vietnam: Examining Economic Growth, Energy, Innovation, Agriculture, and Forests' Impact on CO2 Emissions. *World Development Sustainability*, 100164. <https://doi.org/10.1016/j.wds.2024.100164>

Raihan, A., Rahman, J., Tanchangya, T., Ridwan, M., & Islam, S. (2024e). An overview of the recent development and prospects of renewable energy in Italy. *Renewable and Sustainable Energy*, 2(2), 0008.

Raihan, A., Rahman, J., Tanchangya, T. *et al.* Influences of economy, energy, finance, and natural resources on carbon emissions in Bangladesh. *Carbon Res.* 3, 71 (2024h). <https://doi.org/10.1007/s44246-024-00157-6>

Raihan, A., Rahman, J., Tanchangya, T., Ridwan, M., Rahman, M. S., & Islam, S. (2024f). A review of the current situation and challenges facing Egyptian renewable energy technology. *Journal of Technology Innovations and Energy*, 3(3), 29-52. <https://doi.org/10.56556/jtie.v3i3.965>

Raihan, A., Ridwan, M., & Rahman, M. S. (2024g). An exploration of the latest developments, obstacles, and potential future pathways for climate-smart agriculture. *Climate Smart Agriculture*, 100020.

Raihan, A., Ridwan, M., Tanchangya, T., Rahman, J., & Ahmad, S. (2023a). Environmental Effects of China's Nuclear Energy within the Framework of Environmental Kuznets Curve and Pollution Haven Hypothesis. *Journal of Environmental and Energy Economics*, 2(1), 1-12.

Raihan, A., Tanchangya, T., Rahman, J., & Ridwan, M. (2024a). The Influence of Agriculture, Renewable Energy, International Trade, and Economic Growth on India's Environmental Sustainability. *Journal of Environmental and Energy Economics*, 37-53. <https://doi.org/10.56946/jeee.v3i1.324>

Raihan, A., Tanchangya, T., Rahman, J., Ridwan, M., & Ahmad, S. (2022a). The influence of Information and Communication Technologies, Renewable Energies and Urbanization toward Environmental Sustainability in China. *Journal of Environmental and Energy Economics*, 1(1), 11-23. <https://doi.org/10.56946/jeee.v1i1.351>

Raihan, A., Voumik, L. C., Ridwan, M., Akter, S., Ridzuan, A. R., Wahjoedi, ... & Ismail, N. A. (2024d). Indonesia's Path to Sustainability: Exploring the Intersections of Ecological Footprint, Technology, Global Trade, Financial Development and Renewable Energy. In *Opportunities and Risks in AI for Business Development: Volume 1* (pp. 1-13). Cham: Springer Nature Switzerland.

Raihan, A., Voumik, L. C., Ridwan, M., Ridzuan, A. R., Jaaffar, A. H., & Yusoff, N. Y. M. (2023b). From growth to green: navigating the complexities of economic development, energy sources, health spending, and carbon emissions in Malaysia. *Energy Reports*, 10, 4318-4331. <https://doi.org/10.1016/j.egyr.2023.10.084>

Rasheed, M. Q., Yuhuan, Z., Haseeb, A., Ahmed, Z., & Saud, S. (2024). Asymmetric relationship between competitive industrial performance, renewable energy, industrialization, and carbon footprint: Does artificial intelligence matter for environmental sustainability?. *Applied Energy*, 367, 123346. <https://doi.org/10.1016/j.apenergy.2024.123346>

Rehman, A., Alam, M.M., Ozturk, I. *et al.* Globalization and renewable energy use: how are they contributing to upsurge the CO₂ emissions? A global perspective. *Environ Sci Pollut Res* 30, 9699–9712 (2023). <https://doi.org/10.1007/s11356-022-22775-6>

Renzhi N, Baek YJ (2020) Can financial inclusion be an effective mitigation measure? evidence from panel data analysis of the environmental Kuznets curve. *Financ Res Lett* 37<https://doi.org/10.1016/J.FRL.2020.101725>

Ridwan, M. (2023). Unveiling the powerhouse: Exploring the dynamic relationship between globalization, urbanization, and economic growth in Bangladesh through an innovative ARDL approach.

Ridwan, M. R., & Hossain, M. I. H. I. (2024). Does trade liberalization policy accelerate foreign direct investment in Bangladesh?: An empirical investigation.

Ridwan, M., Akther, A., Al Absy, M. S. M., Tahsin, M. S., Ridzuan, A. R., Yagis, O., & Mukhtar, K. J. (2024e). The Role of Tourism, Technological Innovation, and Globalization in Driving Energy Demand in Major Tourist Regions. *International Journal of Energy Economics and Policy*, 14(6), 675-689.

Ridwan, M., Aspy, N. N., Bala, S., Hossain, M. E., Akther, A., Eleais, M., & Esquivias, M. A. (2024d). Determinants of environmental sustainability in the United States: analyzing the role of financial development and stock market capitalization using LCC framework. *Discover Sustainability*, 5(1), 319.

Ridwan, M., Bala, S., Al Shiam, S. A., Akther, A., Asrafuzzaman, M., Shochona, S. A., ... & Shoha, S. (2024b). Leveraging AI for a Greener Future: Exploring the Economic and Financial Impacts on Sustainable Environment in the United States. <https://doi.org/10.56556/jescae.v3i3.970>

Ridwan, M., Bala, S., Al Shiam, S. A., Akther, A., Hasan, M. M., Asrafuzzaman, M., ... & Bibi, R. (2024c). Leveraging AI for Promoting Sustainable Environments in G-7: The Impact of Financial Development and Digital Economy via MMQR Approach. <https://doi.org/10.56556/gssr.v3i3.971>

Ridwan, M., Raihan, A., Ahmad, S., Karmakar, S., & Paul, P. (2023). Environmental sustainability in France: The role of alternative and nuclear energy, natural resources, and government spending. *Journal of Environmental and Energy Economics*, 2(2), 1-16. <https://doi.org/10.56946/jeee.v2i2.343>

Ridwan, M., Urbee, A. J., Voumik, L. C., Das, M. K., Rashid, M., & Esquivias, M. A. (2024a). Investigating the environmental Kuznets curve hypothesis with urbanization, industrialization, and service sector for six South Asian Countries: Fresh evidence from Driscoll Kraay standard error. *Research in Globalization*, 8, 100223. <https://doi.org/10.1016/j.resglo.2024.100223>

Ridzuan, A. R., Rahman, N. H. A., Singh, K. S. J., Borhan, H., Ridwan, M., Voumik, L. C., & Ali, M. (2023, May). Assessing the Impact of Technology Advancement and Foreign Direct Investment on Energy Utilization in Malaysia: An Empirical Exploration with Boundary Estimation. In *International Conference on Business and Technology* (pp. 1-12). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-55911-2_1

Saba, C. S., & Ngepah, N. (2024). The impact of artificial intelligence (AI) on employment and economic growth in BRICS: Does the moderating role of governance Matter?. *Research in Globalization*, 8, 100213. <https://doi.org/10.1016/j.resglo.2024.100213>

Sadik-Zada, E. R., & Gatto, A. (2023). Grow first, clean up later? Dropping old paradigms and opening up new horizons of sustainable development. *Sustainability*, 15(4), 3595. <https://doi.org/10.3390/su15043595>

Sadiq, M., Chau, K. Y., Ha, N. T. T., Phan, T. T. H., Ngo, T. Q., & Huy, P. Q. (2024). The impact of green finance, eco-innovation, renewable energy and carbon taxes on CO2 emissions in BRICS countries: Evidence from CS ARDL estimation. *Geoscience Frontiers*, 15(4), 101689. <https://doi.org/10.1016/j.gsf.2023.101689>

Sahoo, M., & Sethi, N. (2021). The dynamic impact of urbanization, structural transformation, and technological innovation on ecological footprint and PM2. 5: evidence from newly industrialized countries. *Environment, Development and Sustainability*,. <https://doi.org/10.1007/s10668-021-01614-7>

Saqib, N., Ozturk, I., & Usman, M. (2023). Investigating the implications of technological innovations, financial inclusion, and renewable energy in diminishing ecological footprints levels in emerging economies. *Geoscience Frontiers*, 14(6), 101667. <https://doi.org/10.1016/j.gsf.2023.101667>

Sarder Abdulla Al Shiam, Md Mahdi Hasan, Md Boktiar Nayeem, M. Tazwar Hossian Choudhury, Proshanta Kumar Bhowmik, Sarmin Akter Shochona, Ahmed Ali Linkon, Md Murshid Reja Sweet, & Md Rasibul

Islam. (2024a). Deep Learning for Enterprise Decision-Making: A Comprehensive Study in Stock Market Analytics. *Journal of Business and Management Studies*, 6(2), 153–160. <https://doi.org/10.32996/jbms.2024.6.2.15>

Sarder Abdulla Al Shiam, Md Mahdi Hasan, Md Jubair Pantho, Sarmin Akter Shochona, Md Boktiar Nayeem, M Tazwar Hossain Choudhury, & Tuan Ngoc Nguyen. (2024b). Credit Risk Prediction Using Explainable AI. *Journal of Business and Management Studies*, 6(2), 61–66. <https://doi.org/10.32996/jbms.2024.6.2.6>

Sezgin, F. H., Bayar, Y., Sart, G., & Danilina, M. (2024). Impact of Renewable Energy, Business Climate, and Human Capital on CO2 Emissions: Empirical Evidence from BRICS Countries. *Energies*, 17(15), 3625. <https://doi.org/10.3390/en17153625>

Shang, M., Peng, M. Y. P., Anser, M. K., Imran, M., Nassani, A. A., Binsaeed, R. H., & Zaman, K. (2024). Evaluating the U-shaped environmental kuznets curve in China: The impact of high technology exports and renewable energy consumption on carbon emissions. *Gondwana Research*, 127, 272-287. <https://doi.org/10.1016/j.gr.2023.08.013>

Sharif A, Aloui C, Yarovaya L (2020) COVID-19 pandemic, oil prices, stock market, geopolitical risk and policy uncertainty nexus in the US economy: fresh evidence from the wavelet-based approach. *Int Rev Financ Anal* 70. <https://doi.org/10.1016/j.irfa.2020.101496>

Sohail, M. N., Jiadong, R., Irshad, M., Uba, M. M., and Abir, S. I., (2018a)“Data mining techniques for Medical Growth: A Contribution of Researcher reviews,” *Int. J. Comput. Sci. Netw. Secur*, 18, 5-10.

Sohail, M. N., Ren, J. D., Uba, M. M., Irshad, M. I., Musavir, B., Abir, S. I., and Anthony, J. V, (2018b) “Why only data mining? a pilot study on inadequacy and domination of data mining technology,” *Int. J. Recent Sci. Res*, 9(10), 29066-29073.

Sohail, M. N., Ren, J., Muhammad, M. U., Rizwan, T., Iqbal, W., Abir, S. I., and Bilal, M, (2019)“Group covariates assessment on real-life diabetes patients by fractional polynomials: a study based on logistic regression modeling,” *Journal of Biotech Research*, 10, 116-12.

Syed QR, Bhowmik R, Adedoyin FF, Alola AA, Khalid N (2022) Do economic policy uncertainty and geopolitical risk surge CO2 emissions? New insights from panel quantile regression approach. *Environ Sci Pollut Res* 29(19):27845–27861. <https://doi.org/10.1007/s11356-021-17707-9>

Tamazian, A., & Rao, B. B. (2010). Do economic, financial and institutional developments matter for environmental degradation? Evidence from transitional economies. *Energy economics*, 32(1), 137-145. <https://doi.org/10.1016/j.eneco.2009.04.004>

Tanchangya, T., Raihan, A., Rahman, J., Ridwan, M., & Islam, N. (2024). A bibliometric analysis of the relationship between corporate social responsibility (CSR) and firm performance in Bangladesh. *Frontiers of Finance*, 2(2).

Tang, Y. M., Chau, K. Y., Fatima, A., & Waqas, M. (2022). Industry 4.0 technology and circular economy practices: business management strategies for environmental sustainability. *Environmental Science and Pollution Research*, 29(33), 49752-49769.

Tufail, M., Song, L., Adebayo, T.S. *et al.* Do fiscal decentralization and natural resources rent curb carbon emissions? Evidence from developed countries. *Environ Sci Pollut Res* 28, 49179–49190 (2021). <https://doi.org/10.1007/s11356-021-13865-y>

Uddin, I., Usman, M., Saqib, N. *et al.* The impact of geopolitical risk, governance, technological innovations, energy use, and foreign direct investment on CO₂ emissions in the BRICS region. *Environ Sci Pollut Res* 30, 73714–73729 (2023). <https://doi.org/10.1007/s11356-023-27466-4>

Udeagha MC, Muchapondwa E (2023) Achieving green environment in Brazil, Russia, India, China, and South Africa economies: do composite risk index, green innovation, and environmental policy stringency matter?. *Sustain Dev*. <https://doi.org/10.1002/sd.2597>

Ullah S, Andlib Z, Majeed MT, Sohail S, Chishti MZ (2020) Asymmetric effects of militarization on economic growth and environmental degradation: fresh evidence from Pakistan and India. *Environ Sci Pollut Res*:1–14

Ullah S, Ozturk I, Majeed MT, Ahmad W (2021) Do technological innovations have symmetric or asymmetric effects on environmental quality? Evidence from Pakistan. *J Clean Prod* 316:128239

UNCTAD (2023), BRICS Investment Report. United Nations.

Usman M, Makhdum MSA, Kousar R (2021) Does financial inclusion, renewable and non-renewable energy utilization accelerate ecological footprints and economic growth? Fresh evidence from 15 highest emitting countries. *Sustain Cities Soc* 65:102590. <https://doi.org/10.1016/j.scs.2020.102590>

Voumik, L. C., & Ridwan, M. (2023). Impact of FDI, industrialization, and education on the environment in Argentina: ARDL approach. *Heliyon*, 9(1).<https://doi.org/10.1016/j.heliyon.2023.e12872>

Voumik, L. C., Akter, S., Ridwan, M., Ridzuan, A. R., Pujiati, A., Handayani, B. D., ... & Razak, M. I. M. (2023b). Exploring the factors behind renewable energy consumption in Indonesia: Analyzing the impact of corruption and innovation using ARDL model. *International Journal of Energy Economics and Policy*, 13(5), 115–125. <https://doi.org/10.32479/ijep.14530>

Voumik, L. C., Rahman, M. H., Rahman, M. M., Ridwan, M., Akter, S., & Raihan, A. (2023c). Toward a sustainable future: Examining the interconnectedness among Foreign Direct Investment (FDI), urbanization, trade openness, economic growth, and energy usage in Australia. *Regional Sustainability*, 4(4), 405–415. <https://doi.org/10.1016/j.regsus.2023.11.003>

Voumik, L. C., Ridwan, M., Rahman, M. H., & Raihan, A. (2023a). An investigation into the primary causes of carbon dioxide releases in Kenya: Does renewable energy matter to reduce carbon emission?. *Renewable Energy Focus*, 47, 100491. <https://doi.org/10.1016/j.ref.2023.100491>

Voumik, L.C., Mimi, M.B. Evaluating a pathway for environmental sustainability: the role of energy mix and research and development in European countries. *Environ Sci Pollut Res* 30, 84126–84140 (2023). <https://doi.org/10.1007/s11356-023-28325-y>

Wang, K. H., Kan, J. M., Jiang, C. F., & Su, C. W. (2022). Is geopolitical risk powerful enough to affect carbon dioxide emissions? Evidence from China. *Sustainability*, 14(13), 7867. <https://doi.org/10.3390/su14137867>

Wei R, Ayub B, Dagar V (2022) Environmental benefits from carbon tax in the Chinese carbon market: a roadmap to energy efficiency in the post-COVID-19 era. *Front Energy Res* 10:1–11. <https://doi.org/10.3389/fenrg.2022.832578>

Wei, D., Ahmad, F., Abid, N., & Khan, I. (2023). The impact of digital inclusive finance on the growth of the renewable energy industry: Theoretical and logical Chinese experience. *Journal of Cleaner Production*, 428, 139357. <https://doi.org/10.1016/j.jclepro.2023.139357>

Westerlund J (2007) New simple tests for panel cointegration. *Economic Rev* 24:297–316. <https://doi.org/10.1080/07474930500243019>

Westerlund, J. (2007). Testing for error correction in panel data. *Oxford Bulletin of Economics and statistics*, 69(6), 709–748. <https://doi.org/10.1111/j.1468-0084.2007.00477.x>

Xi J (2022) Hold high the great banner of socialism with Chinese characteristics and strive in unity to build a modern socialist country in all respects report to the 20th national congress of the communist party of China. *Creation* 30(11):6–29

Yadav, A., Gyamfi, B. A., Asongu, S. A., & Behera, D. K. (2024). The role of green finance and governance effectiveness in the impact of renewable energy investment on CO2 emissions in BRICS economies. *Journal of Environmental Management*, 358, 120906. <https://doi.org/10.1016/j.jenvman.2024.120906>

Zaidi, S. A. H., Zafar, M. W., Shahbaz, M., & Hou, F. (2019). Dynamic linkages between globalization, financial development and carbon emissions: Evidence from Asia Pacific Economic Cooperation countries. *Journal of Cleaner Production*, 228, 533–543. <https://doi.org/10.1016/J.JCLEPRO.2019.04.210>

Zhao W, Zhong R, Sohail S, Majeed MT, Ullah S (2021) Geopolitical risks, energy consumption, and CO2 emissions in BRICS: an asymmetric analysis. *Environ Sci Pollut Res* 28:39668–39679. <https://doi.org/10.1007/s11356-021-13505-5>