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Abstract 

This study investigates the impact of Artificial Intelligence (AI) innovation on the ecological footprint in the Nordic 

region from 1990 to 2020, alongside the effects of banking development, stock market capitalization, economic 

growth, and urbanization. Utilizing the STIRPAT model, the study incorporates cross-sectional dependence and 

slope homogeneity tests, revealing issues of heterogeneity and cross-sectional dependence. The analysis employs 

both first and second-generation panel unit root tests, confirming that the variables are free from unit root problems. 

Panel cointegration tests demonstrate that the variables are cointegrated in the long run. To explore the short- and 

long-term relationships, the study utilizes the Panel Autoregressive Distributed Lag (ARDL) model. The Panel 

ARDL results indicate that economic growth, stock market capitalization, and urbanization positively correlate with 

the ecological footprint in both the short and long run. Conversely, AI innovation and banking development 

negatively correlate with the ecological footprint. To validate the Panel ARDL estimations, robustness checks are 

performed using Fully Modified OLS, Dynamic OLS, and Fixed Effects with OLS, all of which support the initial 

findings. Furthermore, the study employs the D-H causality test to identify causal relationships. The results show a 

unidirectional causal relationship between AI innovation, stock market capitalization, urbanization, and the 

ecological footprint. In contrast, a bidirectional causal relationship exists between economic growth and the 

ecological footprint, as well as between banking development and the ecological footprint. 

Keywords: Artificial Intelligence; Banking Development; Stock Market Capitalization; Ecological Footprint; 

Nordics Region 

Introduction 

Because of rising modernization, worldwide population growth, shifting lifestyles, and greater energy consumption, 

the threat of climate change has worsened in recent years (Voumik et al.,2022; Ahmed et al.2024). Based on data 

from Global Footprint Network (GFN 2018), over 80% of people on Earth reside in nations experiencing a serious  
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environmental catastrophe. For developed as well as developing nations, combating global warming and 

environmental damage has been a top concern (Apergis et al., 2023; Raihan et al., 2023a). The Nordic countries 

(Denmark, Finland, Iceland, Norway, and Sweden) are regarded as worldwide examples of converting to green 

energy. They are among the most developed in the World, consistently ranking highly on the Human Development 

Index (HDI) of the United Nations, with Norway leading among them (Urban et al., 2018). They were also effective 

in splitting their economy from carbon emissions, which is obviously highly desirable but challenging to do. The 

Nordic nations have forward aggressive climate change and energy policies to eliminate fossil fuels by 2050 

(Sovacool, 2017). Moreover, this region is widely considered to be a pioneer in climate environmental sustainability 

and home to affluent countries that are contributing significantly to climate change beyond their national borders 

by absorbing a significant portion of the resources and energy used by their citizens (Maczionsek et al., 2023; 

Ridwan et al.2023). These areas are included in the study to provide an intriguing figure with motivating common 

characteristics; they have similar socioeconomic circumstances. Furthermore, they are commonly recognized as 

leaders in the worldwide effort to combat climate change (Jokinen et al., 2020). To address concerns about 

ecological sustainability in the chosen area, this analysis focused on the relationships across stock market 

capitalization, banking development, AI, and economic growth. Using panel data analysis techniques, the project 

seeks to uncover empirical evidence and guide research-based policy recommendations for an improved future that 

is greener both globally and in the Nordic region. 

In the real world, the Nordic area provides a model of how nations, businesses, and individuals have successfully 

reduced their GHG emissions and fostered clean energy (Raihan et al.2022a). The academic literature continues to 

endorse it as an example of advances in technology and the implementation of clean energy sources (Borup et al., 

2008; Sovacool, 2013). Moreover, Finland, Iceland, Norway, and Sweden (except Denmark) have relatively 

substantial levels of sustainability disclosure (94%, 91%, 91%, and 98%, respectively) (KPMG, 2022). Numerous 

global problems, including escalating demands for energy, waste creation, shortages of water, and increasing EFP, 

are contributing to environmental damage (He et al. 2018; Quan et al. 2021). Researchers are linking several EFP-

related elements to reveal potential mitigation strategies that could aid in achieving sustainable development. 

Ecological footprint (EFP) can effectively handle and analyze natural resources and is a substitute that is heavily 

used to evaluate ecosystem conditions (Khan et al. 2021; Ridzuan et al.2023). When the population's needs are met 

outside of the limits of the environment, an ecological deficit results (Dogan et al., 2022; Sahoo and Sethi, 2021). 

This is known as an ecological footprint exceeding biocapacity. Nordic European countries, including all members 

of the European Environmental Agency Countries (EEA-32), might evaluate the outcomes of their "Green Deal" 

initiative and Environmental Action Plans, which represent their primary environmental policy (Apergis et al.,2023; 

Raihan et al.2024a). In fact, by utilizing 15 indicators, the Nordic community established collaboration in 2019 to 

make the Nordic European Area the most integrated, competitive, and sustainable region in the World by 2030 

(Nordic Statistic Database, 2022). By influencing consumption and manufacturing habits, innovation in technology, 

utilization of resources, environmental laws, and social welfare of both the business growth and society, the 

development of stock markets can have a consequence on the EFP (Younis et al., 2021; Sharma et al., 2021; 

Tsagkanos et al., 2019). Depending on some factors, including the extent, framework, effectiveness fluctuation, and 

expansion of the financial system; the level of GDP growth; the quality of the institutions; ecological consciousness 

global context; and advances in the energy field, the rise of stock markets can have both positive and destructive 

implications on EFP (Paramati et al., 2017; Topcu et al., 2020; Raihan et al.2023b). Furthermore, it has been proven 

that modern technology fosters sustainable development over time in all countries, and the Nordic region is no 

exception. By addressing environmental challenges, innovation contributes to the improvement of the natural World 

(Alola et al.,2024). In 2018, there was a 1.7% increase in emissions of carbon in Sweden, with a peak of almost 

33.1 billion metric tons (Khanal, 2021; Raihan et al., 2022b). On the other hand, pollution levels in Norway have 
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been rising continuously since the 1960s, except for a brief drop that occurred between 1990 and 1995. To stop this 

growing trend, which was brought on by uncertain macroeconomic conditions, innovative energy technology 

initiatives, and limitations on greenhouse gas emissions, both nations adopted carbon pricing (Jagers & Hammar, 

2009). In our analysis, we investigate the impact of economic growth, urbanization, stock market capitalization, 

artificial intelligence, and banking development on the Nordic countries' ecological footprint. The following is 

how the article advances earlier research: (i) some researchers have spoken on the connection between the 

environment, development, and energy in panel discussions and individual studies. The present research is the first 

empirical analysis to look at the Nordic countries' advancement in banking, stock market capitalization, AI 

innovation, and ecological footprint—all encouraging indicators through this work. Nonetheless, the majority of 

earlier research (Akram et al., 2020; Ali et al., 2019; Salahuddin et al., 2019; Raihan and Voumik, 2022; Voumik 

et al. 2023a, 2023b) took CO2 emission as a measure of ecological condition. However, the study utilized the EFP 

as a substitute for environmental sustainability. The EFP calculates an individual's or a community's demand for 

accessible natural resources (Omojolaibi and Nathaniel 2020). EFP has, therefore, been employed in numerous 

research to explore the green environment (Pata et al., 2021; Nuta et al.,2024; Idroes et al., 2024) to some extent. 

(ii) The study also contributed to the body of literature on the use of second-generation panel estimation approaches 

as more advanced than conventional panel estimation methods. To investigate both the short- and long-term 

consequences within the chosen variables, we used the Novel ARDL methodology and the STIRPAT framework. 

The remaining content is given below: the existing literature is organized in the second part. Data collection and 

the methodological framework are covered in the next part. The discussion and empirical results are reported in the 

fourth portion. In the fifth subsection, a conclusion and policy implications are developed. 

Literature Review 

Multiple studies have measured the condition of the environment utilizing different indicators, like ecological 

footprint and CO2 emissions. To identify discrepancies in the literature, we conduct a thorough assessment of the 

current condition of academic work in this part. As a result, we will address previous studies on the effects of EFP 

on economic development, urbanization, artificial intelligence (AI), banking development, and stock market 

capitalization, which will support the parameters of our study. The intricate link between GDP and ecological 

footprint (EFP) can be affected by geographic differences as well as additional pertinent factors. The contemporary 

economic boom has had an enormous effect on the increase in carbon emissions globally (Longsheng et al., 2022). 

Sahoo and Sethi (2021) have discovered a similar result in emerging economies using the FMOLS and DOLS 

approaches, and they propose the need for legislative actions to lessen ecological challenges. Using the panel 

dynamic Generalized Method of Moments (GMM) in conjunction with Fully Modified Ordinary Least Square 

(FMOLS), Zhang et al. (2022) conducted research to explore the long-term connection among the chosen factors in 

five emerging countries between 1990 and 2019. They added that the EFP increased as a result of GDP development. 

Moreover, Shahbaz et al. (2023) used annual data from 1992 to 2017 for the ten countries with the biggest ecological 

footprint. They concluded that through a spike in EFP, monetary expansion has a detrimental implication on 

environmental quality. Similar conclusions were reached by Ahmad et al. (2020), Destek (2020), and Sharif et al. 

(2020) about the long-term positive link between EFP and economic growth. Conversely, the rise in GDP of the G-

7 countries concerning greenhouse gas emissions was done by Balcilar et al. (2018). The results go counter to the 

EKC hypothesis, which holds that the condition of the ecosystem in Germany and the UK is not negatively impacted 

by economic growth. Ozturk et al. (2021) discovered that Saudi Arabia's environmental degradation is negatively 

impacted by economic growth. The findings of Li et al. (2022) showed that, in 120 nations, development in the 

economy was linked to a decrease in ecological footprint. This conclusion is facilitated by some research, including 

Ahmed et al. (2021) in the USA, Aslam et al. (2021) in China, and Ali et al. (2021) in Pakistan. 
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By helping with power administration, combating pollution, biodiversity preservation, and other areas, artificial 

intelligence plays a critical role in environmental sustainability and helps achieve sustainable development goals 

(Kumari and Pandey, 2023; Ridwan, 2023). According to Rasheed et al. (2024), artificial intelligence actively 

contributes to reducing emissions of carbon and sustaining the ecosystem of seven developing Asian nations. Chen 

et al. (2022) discovered that the consequences of artificial intelligence (AI) on mitigating CO2 emissions are more 

apparent in big cities, extremely large towns, better-developed facilities, and highly technological cities based on 

panel data collected for 270 Chinese cities. However, in small and medium-sized towns, as well as in cities with 

insufficient services and low levels of technology, it is not significant. Research has adopted AI innovation methods, 

including artificial neural networks (ANNs) and hybrid machine learning models, to examine the environmental 

effects of multiple operations, including the cultivation of soybeans (Kashka et al., 2022), consumption habits 

(Janković et al., 2021), and economic global indicators (Roumiani and Mofidi,2022; Roumiani and Mofidi, 2021). 

These AI models have yielded encouraging predictions of ecological parameters, with ANNs outperforming 

conventional regression methods in terms of ecological impact indices. In the same way, Arya et al. (2024) revealed 

that AI-based solutions for GHG emission monitoring, prediction, and reduction may contribute to a cleaner 

environment. From 2007 to 2020, Liu et al. (2024) illustrated the influences of industrial robots on the ecosystem 

in ten of the World's top manufacturing AI countries: Singapore, South Korea, Japan, Germany, Sweden, Denmark, 

USA, China, France, and Italy. The results imply that these robots enhance the ecological health in the selected 

countries by reducing EFP across different data quantiles. 

The growth of banking can spur economic prosperity by allowing households to purchase vehicles, homes, and 

appliances. However, these activities put pressure on the environment by increasing the demand for and utilization 

of fossil fuels (Baloch et al., 2019, Al Shium et al.2024a). Yet, the growth of banking might encourage the creation 

of high-quality environments: vigorous investments in R&D and environmentally friendly projects could be 

encouraged and financed by a healthy financial system (Zhao et al.,2021; Shahbaz et al.,2016). Financial 

development includes the growth of the banking industry; generally speaking, current research has focused more 

on how financial growth contributes to ecological degradation (Samour et al., 2019). Using data from 1990 to 2018, 

Radulescu et al. (2022) investigate how banking development has affected the ecological impact of 27 OECD 

nations. The MMQR approach results displayed that an upsurge of 1% in banking expansion is expected to increase 

the EFP in all quantiles of the OECD countries. The findings thus confirm that the OECD countries' ecological 

sustainability is compromised by banking development. According to Zafar et al. (2019), the banking development 

index raises emissions of carbon in N-11 countries while lowering them in G-7 territory. Samour et al.(2022) 

acknowledge that banking sector development decreases the environmental level and extends the idea that South 

Africa must leverage the growth of the banking industry to reduce ecosystem damage. From one perspective, the 

growth of the banking industry could encourage modern innovations in the power sector to aid in the reduction of 

emissions and ensure environmental sustainability (Khan and Rehan, 2022). However, an investigation carried out 

in Malaysia between 1980 and 2018 by Altıntaş et al. (2024) found that the improvement of the banking industry 

has a favorable effect on the green environment. Furthermore, rising loan rates in developed economies, growing 

rates of deposits in emerging nations, and higher rates in countries that are developing all help decrease greenhouse 

gases overall (Obiora et al., 2020). 

Numerous studies indicate that the size of the stock market can have a positive or inverse effect on EFP, considering 

several elements. Focusing on rapid financial achievements in the stock market can push companies to prioritize 

profits over biodiversity concerns, potentially leading to increased environmental damage (Taghizadeh-Hesary et 

al., 2022; Al Shium et al., 2024b). Incorporating the capitalization of stocks (SMC) into national and regional global 

warming mitigation efforts is essential, primarily to tackle the adverse impacts of environmental degradation 

(Azeem et al., 2023). These considerations serve as a basis for examining the connection between environmental 
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damage and stock market capitalization (Ozturk and Acaravci 2013; Sadorsky 2010). When accounting for market 

shocks, Mhadhbi et al. (2021) demonstrated that the stock market growth measures of emerging market countries 

have a destructive influence on natural health quality. Li et al. (2022) demonstrated that the stock market had a 

detrimental effect on ecological sustainability in OECD countries that were undergoing rapid economic growth but 

that it was positively correlated with better environmental quality in nations that were experiencing slower economic 

expansion. According to Zafar et al. (2019), stock market activity caused CO2 emissions to grow in G7 countries 

relative to N-11 countries, while it decreased in N-11 countries and improved the ecological condition. Su (2023) 

examines the intricate dynamics of stock market capitalization and CO2 emissions. Utilizing the NARDL model 

demonstrates that China's stock market capitalization is responsible for short-term increases in environmental 

deterioration. Similarly, Nguyen et al.(2021) demonstrated that SMS is not good for the ecological condition of G-

6 countries as it leads to a rise in carbon emissions. However, Zeqiraj et al. (2020) revealed that the stock market 

assisted EU nations in building economies with low emissions. Habiba et al. (2021) also agreed that environmental 

pollution decreased in industrialized economies and the G20 countries as stock markets developed but climbed in 

emerging economies. Moreover, Asiedu (2024) found that in rising countries, stock market capitalization reduces 

EFP. Since urbanization is thought to be one of the primary drivers of ecological decline, it has garnered much 

attention in empirical as well as theoretical studies (Adebayo and Kirikkaleli, 2021; Rana et al., 2024). Multiple 

scholars have empirically examined the adverse and beneficial correlation between urbanization and ecological 

conditions. Using FMOLS and DOLS long-run estimators, Ulucak et al. (2020) assessed the BRICS countries from 

1992 to 2016. The evidence indicates urbanization reduces EFP, suggesting that it improves the ecology. Similarly, 

urbanization improves the ecosystem quality in Sri Lanka (Gasimli et al. 2019). Chien et al. (2023) analyzed the 

consequences of urbanization on the generation of GHGs in the G-7 nations using the innovative MMQR method. 

They found that an increasing population reduces pollution in high-emission economies. Conversely, Nathaniel et 

al. (2021) observed a negative correlation between URBA and ecological effects at the top 10 tourist locations. 

According to Ahmed et al. (2020a), from 1971 to 2014, urbanization boosted the EFP in the G7 areas. Similar 

findings were made by Nathaniel et al. (2020) within the MENA region, Zhang et al. (2021) in Malaysia, Ridwan 

et al. (2024) in six South Asian countries, Raihan et al. (2024b) in the G-7 region, Liu et al. (2024) in China, Voumik 

and Ridwan (2023) in Argentina, and others which showed that urbanization degrades the environment. Moreover, 

Addai et al. (2022) in Eastern Europe revealed that urbanization is not a uniform cause of ecological footprint. In 

Pakistan, negative trends in urbanization caused a decline in environmental degradation, while positive urbanization 

movements prompted an increase in it (Arif et al.,2023).  

Regarding the link between the improvement in the banking sector, artificial intelligence (AI), stock market 

capitalization, and the ecological footprint, there is a deficiency in the literature currently in publication, especially 

when it comes to the Nordic region. Previous research has largely concentrated on greenhouse gas emissions, or 

CO2 emissions, and has overlooked the important factor of ecological footprint (EFP). In particular, by encouraging 

funding for environmentally friendly projects and green technologies, banking growth, and stock market 

capitalization may improve the condition of the environment. Moreover, efforts in the application of Green AI might 

support green habits, reduce climate risk, promote clean energy, and create ecological practices, all of which would 

lessen the negative effects on the environment. Together, these elements constitute artificial intelligence, the growth 

of banks, and stock market capitalization, which is a whole new area of study from a Nordic standpoint. To address 

those drawbacks, the research assists academicians and stakeholders in developing strategies that are specific to the 

ecological and macroeconomic fields of the Nordic region by utilizing statistical techniques such as ARDL, 

FMOLS, DOLS, and FE-OLS processes. 
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Methodology 

Data and Variables 

This study used data from the Global Footprint Network (GFN), Global Financial Development (GFD), and World 

Development Indicators (WDI) from 1995 to 2021 to check out the consequences of GDP, banking development, 

stock market capitalization, artificial intelligence (AI), and urbanization on the EFP of the Nordic area. These 

countries were picked for consideration due to the value and accessibility of their statistical information for our 

ongoing research requirements. The ecological footprint is the dependent variable in our work. The GFN delivered 

the EFP statistics, and the WDI gave the GDP per capita in US dollars. Statistics on urbanization were also taken 

from WDI. Our research relies on data from the GFD to determine important elements such as banking development 

and stock market capitalization. Our World in Data is where the AI variable data came from. Table 1 

straightforwardly illustrates the factors. 

In this study logarithmic variables is used to handle non-linear connections and stabilize variance. Logarithmic 

transformations facilitate the linearization of connections between variables, simplifying the application of linear 

regression techniques and enabling the interpretation of coefficients as percentage changes. In addition, they tackle 

heteroscedasticity problems by reducing the range of data, which can enhance the accuracy of the model and the 

statistical significance. Furthermore, log transformations can mitigate the influence of extreme values or outliers, 

resulting in more resilient and dependable outcomes in empirical investigations. 

 

Table 1. Description and Source of Variables 

Variables Description Logarithmic 

Form 

Unit of Measurement Source 

EFP Ecological 

Footprint 

LEFP Gha per person GFN 

LGDP Gross Domestic 

Product  

LGDP GDP per capita (Current 

US$) 

WDI 

LAI AI Innovation LAI Annual patent applications 

related to AI 

Our World in data 

LBD Banking 

Development  

LBD Deposit money banks 

assets to GDP (%) 

Global Financial 

Development 

LSMC Stock Market 

Capitalization  

LSMC Stock market 

capitalization to GDP (%) 

Global Financial 

Development 

LURBA Urbanization  LURBA Urban Population (% of 

total population) 

WDI 

 

Theoretical Framework 

According to Voumik and Ridwan (2023), the IPAT model can be utilized to evaluate how business activity impacts 

the environment as well as energy consumption. The environmental pressure resulting from prosperity, population 

trends, and innovations in technology is measured by the framework using a random effects regression (Ehrlich and 

Holdren, 1971). Through the selection of dependent and independent variables, we illustrate the use of the widely 

accepted IPAT/STIRPAT model. The term STIRPAT stands for population, wealth, and technology-related 

stochastic effects through regression. Many nations have acknowledged this approach as a legitimate choice, 
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including Malaysia, Italy, the Nordic, China, and the OECD (Shahbaz et al.,2016; Pattak et al.,2023; Owusu et 

al.,2024; Amin & Dogan, 2021; Hashmi & Alam, 2019). This investigation is conducted considering some factors 

such as population dynamics, financial situations, and technological innovations:  

I = ∫ PAT                       (1) 

In this study, we employed EFP as an indication of ecosystem damage (I). Following the STIRPAT framework 

offered by Dietz and Rosa (1997), we utilized urbanization as a measure of population (P), economic growth, 

banking development, stock market capitalization as an indicator of affluence (A), and AI as a measure of 

technology (T). Equation (2) displays the updated form after the intercept term (C) and standard error term (ε) were 

included. 

𝐼𝑖 = 𝐶. 𝑃𝑖
𝛽

. 𝐴𝑖
𝛾

. 𝑇𝑖
𝛿 . 𝜀𝑖                                         (2) 

The empirical model used in this article is the outcome of a thorough review of the relevant research, and this review 

has informed the subsequent representations. 

 

𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑎𝑙 𝐼𝑚𝑝𝑎𝑐𝑡 = 𝑓(𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛, 𝐴𝑓𝑓𝑙𝑢𝑒𝑛𝑐𝑒, 𝑇𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦)            (3) 

In addition to independent factors, we included environmental impact and used EFP as a proxy indicator. To obtain 

Equation (4), apply the following procedure: 

 

𝐸𝐹𝑃𝑖𝑡 = 𝛼0 + 𝛼1𝐺𝐷𝑃𝑖𝑡 + 𝛼2𝐴𝐼𝑖𝑡 + 𝛼3𝐵𝐷𝑖𝑡 + 𝛼4𝑆𝑀𝐶𝑖𝑡 + 𝛼5𝑈𝑅𝐵𝐴𝑖𝑡       (4) 

Here, GDP means gross domestic product, AI stands for Artificial intelligence, BD indicates banking development, 

SMC for stock market capitalization, and URBA for urbanization. In equation (4), we adapted  𝛼1 to 𝛼5 for 

coefficients of the independent variables and 𝛼0 denoted intercept term. The log forms of the variables are used in 

equation (5) to ensure normal distribution. 

𝐿𝐸𝐹𝑃𝑖𝑡 = 𝛼0 + 𝛼1𝐿𝐺𝐷𝑃𝑖𝑡 + 𝛼2𝐿𝐴𝐼𝑖𝑡 + 𝛼3𝐿𝐵𝐷𝑖𝑡 + 𝛼4𝐿𝑆𝑀𝐶𝑖𝑡 + 𝛼5𝐿𝑈𝑅𝐵𝐴𝑖𝑡   (5) 

Econometric Framework 

The characteristics of the panel data in the Nordic nations might face stationary CSD, SH, or mixed-order stationary 

challenges. While all of these economies are growing, the rates of growth vary significantly. Here, the slope 

homogeneity test is employed for this reason. In this endeavor, the first and second-generation unit root 

assessments, along with the cointegration examination, are required to confirm the CSD and SH concerns. After the 

study had considered all of these criteria, the ARDL approach was adopted. The estimations of FMOLS, DOLS, 

and FE-OLS were featured in our analysis to determine the accuracy. The conclusions of the research, their 

interpretation, and potential implications for the study are all concisely and precisely described in this section, which 

may be subdivided by areas. 

 

Cross-Sectional Dependence Test 

In panel data, an increase in CSD is expected as monetary integration grows and additional barriers are eliminated 

(Ridwan et al.,2024). If researchers ignore the issue and handle the cross-sections as isolated, CSD may produce 

disorganized, misleading, and contradicting results (Hoyos et al., 2006). It is essential to explore the information 

for CSD because panel data are utilized in this study; this test can be seen by the following equation. 
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𝐶𝑆𝐷 = √
2𝑇

𝑁(𝑁−1)𝑁
(∑ ∑ 𝐶𝑜𝑟𝑟𝑖,𝑡

̂𝑁
𝐾=𝑖+1

𝑁−1
𝑖=1 )……………………… (6) 

Slope Homogeneity Test 

Slopes in panel data are often consistent because cross-sections usually share the same properties. For this reason, 

it is essential to handle slope homogeneity in panel data analysis (Ayad and Djedaiet, 2022). According to Pesaran 

and Yamagata (2008), the homogeneity of the slopes is confirmed using the SH test. This evaluation makes use of 

each individual's weighted slope dispersion. The slope heterogeneity is shown by Equation (7) as follows:   

∆ ̌ = √𝑁 (
𝑁−1𝑆%−𝑘

√2𝑘
) and ∆̌𝑎𝑑𝑗=  √𝑁 (

𝑁−1𝑆%−𝑘

√
2𝑘(𝑇−𝑘−1)

𝑇+1

)………………….. (7) 

Panel Unit root test 

To guarantee the correct cointegration order for panel data, Rauf (2018) advised utilizing both parametric and 

nonparametric approaches. The first generation of the panel unit root test fails to consider heterogeneity, CSD 

consequences, or over-rejection of null hypotheses into account (Choi, 2001). To solve this issue, the investigation 

leverages the first-generation unit root examination, known as the Levin, Lin, and Chu (LLC) test, which was 

developed by Levin et al. (2002), and the IPS test introduced by Im et al. (2003). Conversely, Pesaran (2007) 

established the CIPS and CADF, which are second-generation unit root methods that take CSD and slope variability 

into account. The following formula may be used to represent the IPS test: 

∆𝑦𝑖𝑡 = 𝛼𝑖 + 𝛽𝑖𝑡 + 𝛾𝑦𝑖𝑡−1 + 𝛿𝑖∆𝑦𝑖𝑡−1 + 𝜀𝑖𝑡…………………………… (8) 

The following formulas were used for the LLC test statistics: 

 

∆yit = 𝛽𝑖yit−1 + ∑ dij∆yit−1 + Git
′ ηϑi

j=1 + μit         ………………………………….(9)                             

                                      

Here,  𝐺𝑖𝑡
′   means the column vector of the independent variable, and in regression, 𝜂  indicates the vector of 

parameters. The CIPS unit root analysis ensures unit roots in individual time series are checked and addresses CSD 

in panel data to prevent inaccurate inference if not adequately addressed (Polcyn et al.,2023). The CIPS test is 

conducted using Equation (10): 

 

𝐶𝐼𝑃𝑆 =  
1

𝑁
∑ 𝑡1(𝑁, 𝑇)𝑁

𝑡=1 ……………………………… (10) 

Here, N denotes a cross-sectional dimension, and T indicates a time series dimension. The CADF test has a strong 

relationship with the CIPS test. Equation (11) provides the following method for computing the CADF: 

∆𝑌𝑖𝑡 =  𝜑𝑖 +  𝜌𝑖𝑌𝑖𝑡−1 + 𝜑𝑖�̅�𝑡−1 + ∑ 𝜑𝑖𝑗�̅�𝑡−1

𝑚

𝑗=1
+ ∑ 𝛾𝑖𝑗

𝑚

𝑗=1
∆𝑌𝑖,𝑡−1 + 𝜀𝑖𝑡 … … … (11) 

Here, �̅�𝑡−1 and ∆𝑌𝑖,𝑡−1 represent the mean values of the cross-sectional analysis for both the first difference and lag. 
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Panel Cointegration test 

Our examination used a second-generation panel cointegration assessment to assess for long-term cointegration 

among the variables after data stationarity. This method provides more accurate and consistent cointegration 

estimates than first-generation panel cointegration techniques (Ridwan et al., 2024, Arif et al.2024). A stable, long-

term correlation across two or more non-stationary factors is referred to as cointegration. In other words, 

cointegrated factors typically follow the same course throughout time despite periodic variations (Westerlund and 

Edgerton, 2008). This method was invented by Westerlund (2007), and the four equations below describe this test 

form. 

𝐺𝑎 =
1

𝑛
∑

𝑎𝑖́

𝑆𝐸(𝑎𝑖́ )
𝑁
𝑖=1 …………………….. (12) 

 

𝐺𝑡 =
1

𝑛
∑

𝑇𝑎𝑖́

𝑎𝑖(1)́
𝑁
𝑖=1 ……………………… (13) 

𝑃𝑡 =
�́�

𝑆𝐸(�́�)
……………………………. (14) 

𝑃𝑎 = 𝑇�́�……………………………… (15) 

Moreover, panel means statistics (Pt and Pa), there are additional group means statistics (Gt and Ga), each with its 

own set of symbols. The same test results are expected if the model variables are assumed to be "null" or 

disconnected; otherwise, if the assumption is placed that "there exist cointegrating links." 

 

Panel ARDL method 

We used the panel ARDL technique, recommended by Pesaran et al. (2001), as the variables are a combination of 

the I(0) and I(1) procedures. Regardless of the specified variables' order of integration, the ARDL methodology can 

simultaneously and rigorously estimate the short- and long-term associations (Alsamara et al., 2024). Pesaran and 

Shin (1995) claimed that since the ARDL model has no residual correlation and removes both serial correlation and 

endogeneity, it provides less reason for concern over the endogeneity issue. Furthermore, it produces consistent 

findings even when endogeneity problems arise because the dynamic speciation of the model can be sufficiently 

enhanced to make serial mistakes uncorrelated and regressors purely exogenous (Loayza & Rancière, 2006). The 

following are some reasons why the ARDL approach is beneficial:  In a mixed order of integration, such as I(0) and 

I(1), or strictly I(1) but not I(2), it can be used. (ii) It addresses the endogeneity and serial correlation challenges. 

(iii) Robust for a limited number of samples (Nathaniel et al., 2024).  

The long-term relationship models for PMG are expressed as follows: 

 

∆Y1,it = ∂1i + α1iY1,it−1 + ∑ α1iX1,it−1 + ∑ δ1ij∆Y1,it−j + ∑ ∑ δlijΔX1,it−j + ε1i,t
k
l=2

q−1
j=0

p−1
j=1

k
l=2          (16) 

Here, 𝑌1 refers to the dependent variable, and 𝑋1 is an independent variable where l=1,2,3,4. 𝜀𝑖𝑡  and Δ are residual 

& first difference operators, respectively.  
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Two steps are considered when applying the ARDL technique. The initial step is to employ the F test to assess 

whether there is a long-term link among the pertinent variables in the presence of an error correction. Estimating 

the coefficients of the long-run relations is the second stage of the ARDL, which comes after confirming that the F 

tests from the first step fall within acceptable limits (Hazmi et al.,2024). As a result, the long-term links between 

development in the economy, urbanization, banking development, stock market capitalization, AI, and ecological 

footprint of Nordic territory can be expressed using the ARDL models: 

∆𝐿𝐸𝐹𝑃𝑖𝑡 =  𝜕1𝑖 + 𝛼1𝑖𝐿𝐸𝐹𝑃𝑖,𝑡−1 + 𝛼2𝑖𝐿𝐺𝐷𝑃𝑖,𝑡−1 + 𝛼3𝑖𝐿𝐴𝐼𝑖,𝑡−1 + 𝛼4𝑖𝐿𝐵𝐷𝑖,𝑡−1 + 𝛼5𝑖𝐿𝑆𝑀𝐶𝑖,𝑡−1 +

        𝛼6𝑖𝐿𝑈𝑅𝐵𝐴𝑖,𝑡−1 +     ∑ 𝛿1𝑖∆𝐿𝐸𝐹𝑃𝑖,𝑡−𝑗 +  ∑ 𝛿2𝑖∆𝐿𝐺𝐷𝑃𝑖,𝑡−𝑗 + ∑ 𝛿3𝑖∆𝐿𝐴𝐼𝑖,𝑡−𝑗 + ∑ 𝛿4𝑖∆𝐿𝐵𝐷𝑖,𝑡−𝑗 +
𝑞
𝑖=0

𝑞
𝑖=0

𝑞
𝑖=0

𝑝
𝑗=1

 ∑ 𝛿5𝑖∆𝐿𝑆𝑀𝐶𝑖,𝑡−𝑗 + ∑ 𝛿6𝑖∆𝐿𝑈𝑅𝐵𝐴𝑖,𝑡−𝑗 + 𝜀1𝑖,𝑡
𝑞
𝑖=0

𝑞
𝑖=0    …………(17) 

Furthermore, the following is the short-run association that takes ECM into account: 

ΔLEFPit =  ∑ β1ij∆LEFPi,t−j + ∑ β2ij∆LGDPi,t−j + ∑ β3ij∆LAIi,t−j + ∑ β4ij∆LBDi,t−j +
q−1
i=0

q−1
i=0

q−1
i=0

p−1
j=1

∑ β5ij∆LSMCi,t−j + ∑ β6ij∆LURBAi,t−j + μ1iECT1,it−1 + ε1i,t
q−1
i=0

q−1
i=0   ………….(18)    

                     

Robustness Check 

We have used the robustness check estimators CCR, FMOLS, and DOLS. For a more accurate and comprehensive 

view of the effects over time, the researchers carried out FMOLS and DOLS calculations. For time-series modeling, 

FMOLS was initially proposed by Phillips and Perron as a method of regression for effective parameter estimation 

in cointegrated systems (Phillips and Perron, 1988). It is especially renowned for its dependability in small sample 

sizes and its capacity to deal with endogeneity and serial correlation, as noted by Hamit-Haggar (Hamit-Haggar, 

2012). However, Kao and Chiang have proved that the DOLS estimation approach, which was developed by Stock 

and Watson, performs better than FMOLS in terms of estimating outcomes. This is because Kao and Chiang took 

into account correlations among regressors (Stock and Watson, 1993; Kao, 1999). Additionally, the FE-OLS 

approach is applied, which is a great tool for verifying that FMOLS and DOLS are legitimate. FE-OLS is robust 

with autocorrelation and CSD, and it is enhanced by DKSE (Driscoll and Kraay 1998). Also, this approach is robust 

to common forms of autocorrelation and CSD up to a predetermined lag (Adebayo et al., 2022).  

D-H Causality test 

Lastly, this study applies Dumitrescu and Hurlin's (2012) causality examination to confirm the short-term 

correlation across the variables, which is required for policymaking. For non-homogeneous panel data models with 

consistent coefficients, the D-H panel causality analysis is a straightforward variant of the Granger non-causality 

test (Ahmed et al., 2022). The DH causality test is a more appropriate and reliable method than the Granger non-

causality test (Hashmi et al., 2021) and can be used in both short and long panels (𝑁 > 𝑇). Additionally, this method 

may address multiple significant issues with pooled data, like CSD and individual heterogeneity. It has been used 

in earlier research (Destiartono and Hartono, 2022; Ajanaku and Collins, 2021). The following can be used to write 

a general model: 

𝑃𝑖,𝑡 = 𝜗𝑖 + ∑ 𝜆𝑖
𝑛𝑃𝑖,𝑡−𝑖 + ∑ 𝛼𝑖

𝑛𝛽𝑖,𝑡−𝑖 + 𝜀𝑡
𝑘
𝑖=1

𝑘
𝑖=1  ……………………………….. (19) 

In the D-H equation, the constant, regression parameter, and auto regressions are represented by 𝜗𝑖, 𝜆𝑖
𝑛, and 𝛼𝑖

𝑛.  
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Results and Discussion 

Table 2 presents the descriptive information of GDP, AI, BD, SMC, URB, and EFP in logarithmic format for the 

study period (1980–2018). The data's standard deviation, median, minimum, mean, and maximum values were all 

displayed properly in the table. The calculated standard deviations of the majority of the variables are quite small, 

indicating that the data points are somewhat temporally variable and centered around the mean. The majority of the 

variables exhibit a negative skew, except LEFP and LURBA. Furthermore, the Jarque-Bera test and low kurtosis 

and skewness statistics support the normal distribution of the variables.  

Table 2. Descriptive Statistics of Variables 

Statistic LEFP LGDP LAI LBD LSMC LURBA 

Mean 2.172568 10.86771 3.102615 4.804582 3.799236 4.452720 

Median 1.897619 10.87999 3.135494 4.832309 3.922183 4.447006 

Maximum 3.776661 11.54785 3.89182 5.72111 4.82769 4.542699 

Minimum 1.587192 10.10012 1.791759 3.834337 2.332338 4.335695 

Std. Dev. 0.641229 0.312364 0.502838 0.345983 0.535468 0.053723 

Skewness 1.37579 -0.179975 -0.529248 -0.120022 -0.843834 0.045105 

Kurtosis 3.348248 3.055801 2.47716 2.933702 2.949145 2.550493 

Jarque-Bera 35.25716 0.608104 6.388144 0.284241 13.0662 0.963392 

Probability 0 0.737823 0.041005 0.867517 0.001454 0.617735 

Sum 238.9825 1195.448 341.2877 528.504 417.9160 489.7992 

Sum Sq. Dev. 44.81805 10.63526 27.56027 13.04774 31.25316 0.314587 

Observations 110 110 110 110 110 110 

 

Table 3 illustrates the CSD test findings for the selected elements. Test statistics and p-values are available for all 

explanation variables. If the p-value is less than one of the three significant levels (1%, 5%, or 10%), the null 

hypothesis that there is no CSD is rejected. The p-values (0.000) for the tests performed on cross-sectional variables 

in Table 3 provide evidence of a CSD for each variable studied at the 1% level. It implies, then, that there may be 

a CSD issue with our data collection. 

Table 3. Results of the CSD test 

Variables CD-Statistics P-Value 

LEFP 8.75*** 0.000 

LGDP 13.03*** 0.000 

LAI 6.11*** 0.000 

LBD 6.64*** 0.000 

LSMC 7.28*** 0.000 

LURBA 14.18*** 0.000 
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Panel data analysis commonly uses the Slope Homogeneity assessment to ascertain whether the independent 

variable coefficients are constant across several cross-sectional units (in this case, country). With p-values of 0.000, 

the Δ̌ statistic of 4.654*** and the Δ̌𝑎𝑑𝑗 test statistic of 5.637*** both from Table 4 suggest that there is a 

considerable degree of variance in the slopes across the parameters. The fact that the links among the model's 

elements change during the cross-sectional units suggests the existence of unique effects or coefficients for the 

explanatory variables. 

 

Table 4. Results of Slope Homogeneity test 

Slope homogeneity 

tests 
Δ statistic P-value 

Δ̌ test 4.654*** 0.000 

Δ̌𝑎𝑑𝑗 test 5.637*** 0.000 

 

Table 5 reveals the outcomes from three distinct unit root analyses. The IPS test shows that all other variables 

(LGDP, LAI, LBD, and LSMC) are level stationary at the 1% significance level, except for LEFP and LURBA. 

However, at their first difference, I(1), each factor becomes stationary. Second-generation tests, such as CIPS and 

CADF, provide more accurate findings than first-generation testing when dealing with panel data, which might 

exhibit cross-sectional interdependence. Such tests include cross-sectional means of lagged levels and initial 

differences. The results of the IPS tests accord with those of the CIPS and CADF examinations, as Table 5 

demonstrates. According to the results, every component is primarily integrated at either level (I(0)) or first 

difference (I(1)). As a result, there is no unit root issue, and the elements have cointegrated over a long period. 

Table 5. Results of Panel Unit root test 

Variables IPS CIPS CADF Decision 

I(0) I(1) I(0) I(1) I(0) I(1) 

LEFP -1.939 -7.031*** -1.268 -5.874*** -2.131 -4.088*** I(1) 

LGDP -3.296*** -6.452*** -4.961*** -6.496*** -3.115*** -4.981*** I(0) 

LAI -3.270*** -8.991*** -3.630*** -5.352*** -3.853*** -5.778*** I(0) 

LBD -3.131*** -6.656*** -4.736*** -5.831*** -3.140*** -4.503*** I(0) 

LSMC -3.851*** -5.312*** -3.289*** -5.066*** -3.231*** -4.556*** I(0) 

LURBA -1.555 -3.495*** -1.444 -3.611*** -1.691 -4.632*** I(1) 

 

After establishing that every parameter stays constant, the next step is to assess whether the variables are 

cointegrated within time. The results of Westerlund's (2007) cointegration assessment conducted for this 

investigation are displayed in Table 6. Given that the Gt, Ga, Pt, and Pa statistics all have statistically significant p-

values (less than 0.05), therefore we can reject the null hypothesis. The results of this test indicate that long-run 

cointegration prevails between the factors under consideration. 
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Table 6. Results of Westerlund Panel Cointegration test 

Statistics Value Z-Value P-value 

Gt -2.956 -2.956 0.010 

Ga -5.829 1.717 0.021 

Pt -4.829 -1.560 0.034 

Pa -4.400 1.021 0.012 

 

The Panel ARDL model's results, given in Table 07, demonstrate the intricate dynamics influencing the Nordic 

region's ecological footprint. In terms of LGDP, the short-term coefficient is 0.166 but statistically insignificant, 

with a p-value greater than the typical threshold, while the long-run coefficient is 0.095 and statistically significant 

at conventional levels. This suggests that economic expansion alone may notably contribute to environmental 

degradation in this setting, as GDP has an encouraging influence on the EFP. Nathaniel et al. (2020a) identified that 

in MENA nations, GDP growth raises the EFP and degrades the environment. Moreover, Ahmed et al.(2020a) in 

G-7 countries, Mikayilov et al. (2018) in oil-rich economies, Khan et al.(2021) in Malaysia, and Ahmed et 

al.(2020b) in China also align with these findings. However, in the long run, environmental quality in Europe is 

improved by 0.81% for every 1% growth in real GDP (Alola et al., 2019). Georgescu and Kinnunen (2024) in 

Finland reveal that GDP negatively influences ecological footprint. Surprisingly, economic expansion has no 

adverse effects on the ecosystems in CIVETS (Colombia, Indonesia, Vietnam, Egypt, Turkey, and South 

Africa) (Nathaniel et al.,2020b).  

In the short and long terms, there is a negative link between LAI and LEFP; the short-term results are not significant, 

but the long-term coefficients are. This conclusion demonstrates that while AI technology has a short-term 

destructive implication on the environment, it has a long-term favorable advantage. LEFP drops by 0.057% in the 

near run and 0.097% in the long term for every 1% increase in LAI. This could be because while urgent green 

initiatives need assets, AI can improve energy efficiency across a range of industries, such as manufacturing, travel, 

and residence power. Dhar (2020) talked about AI's dual role in the fight against climate change, emphasizing that 

technology is a major carbon emitter as well as a tool for tackling the issue. Furthermore, Liang et al. (2022) made 

use of AI's ability to reduce emissions of carbon in China's industrial sector. The findings showed that China still 

has a long way to go in improving its performance in this area. Similarly, there is an obvious connection between 

banking sector activities and the environment, as evidenced by the inverse relationship observed between LBD and 

LEFP across both short and long periods. These results imply that banking development could boost ecological 

conditions in the long run but not in the short term, with p-values over the usual level in the short run and below 

0.05 in the long run. Based on Sadorsky (2011), the established banking industry also increases consumer credit, 

which motivates people to purchase more appliances and cars, increasing energy demand and harming the natural 

environment. However, domestic bank lending to the private sector helps businesses create more cash assets and 

manufacturing inputs to create energy-efficient machinery and tools (Kareem et al.,2023). In contrast to our 

findings, Radulescu et al. (2022) contend that the OECD countries' ecological sustainability is negatively impacted 

by banking expansion.  

https://link.springer.com/article/10.1007/s10651-022-00551-6#ref-CR38
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In both the short and long term, the table demonstrates an encouraging relationship between LSMS and LEFP. The 

long-term statistical significance of the effect is supported by a slight short-term effect, indicating that stock market 

capitalization stimulates higher monetary and business transactions but may not have a positive short-term impact 

on the ecosystem. Asiedu (2024) disputes our results, stating that stock market capitalization ensures environmental 

sustainability in emerging nations and reduces the ecological footprint in those nations. However, Paramati et al. 

(2017) discovered that long-term environmental sustainability is guaranteed by stock market expansion in 

industrialized nations. Based on both short- and long-term assessments, urbanization (LURBA) and LEFP have an 

encouraging interaction. Over time, there is a small but statistically significant 0.0870% increase in LEFP with a p-

value of less than 0.05 for every 1% increase in LURBA. A notable short-term spike in LEFP of 0.706% is 

associated with a 1% rise in LURBA. This could be because of the continual consequences of urban expansion, 

which lower ecological diversity and disrupt the natural World, such as the destruction of trees and the removal of 

natural ecosystems for redevelopment. According to Abid et al. (2022), there is a need for improved laws in the G-

8 countries due to the substantial impact that urbanization has on environmental deterioration. Moreover, Nathaniel 

(2021) in South Africa, Salahuddin et al.(2019) in Sub-Saharan Africa (SSA) economies, and Alola et al.(2024) in 

the Nordic region also agree that urbanization increases the EFP and degrades the ecosystem. Conversely, Zhu et 

al. (2018) found that in the BRICS region, urbanization lowers carbon emissions and hence enhances environmental 

quality. 

 

Table 7. Results of Panel ARDL method 

Long-run Estimation 

Variable Coefficient Std. Error t-Statistic Prob.* 

LGDP 0.095 0.047113 1.918186 0.0032 

LAI -0.097 0.04754 -2.055968 0.0435 

LBD -0.247 0.14441 -1.710938 0.0115 

LSMC 0.233 0.04906 4.754246 0.0000 

LURBA 0.870 0.79054 2.896378 0.0000 

Short-run Estimation 

Variable Coefficient Std. Error t-Stat p-Value 

COINTEQ01 -0.533 0.173518 -3.072053 0.0030 

D(LGDP) 0.166 0.029231 5.700034 0.0000 

D(LAI) -0.057 0.041075 -1.396781 0.1669 

D(LBD) -0.129 0.090518 -1.427376 0.1579 

D(LSMC) 0.067 0.046865 1.440284 0.1542 

D(LURBA) 0.706 4.496835 1.713697 0.0911 

C 10.068 3.226847 3.120119 0.0026 

 

Multiple kinds of estimating methods, such as FMOLS, DOLS, and FE-OLS, were utilized to investigate 

the accuracy of the ARDL results in more detail in Table 8. For each of the three tests, the projected LGD values 

are 0.012, 0.285, and 0.082, accordingly. These outcomes indicate that the Nordic countries' ecological health has 
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been harmed by economic expansion. The results are consistent with the ARDL model's short and long-term 

conclusions despite the fact that all estimators show significant coefficient values at the 1% level of thresholds. 

Conversely, based on the findings of all three tests, the LEFP variable exhibits a negative connection with both LAI 

and LBD. In the FMOLS test, the LAI coefficient values are significant at the 5% level; in the DOLS and FE-OLS 

tests, they are significant at the 1% level. In particular, EFP reduces by 0.023%, 0.089%, and 0.026%, respectively, 

for every 1% boost in AI innovation. This implies that the ecosystems in the Nordic nations might benefit from the 

application and adoption of AI technologies. These findings are consistent with statements drawn from the Panel 

ARDL calculation. In a similar vein, the three estimation procedures reveal a negative correlation between the LBD 

variable and LEFP. In particular, LEFP will fall by 0.088%, 0.287%, and 0.039%, respectively, for every 1% 

increase in banking development. The variable is statistically significant at the 1% level in each instance. This is 

parallel to the discoveries of the ARDL model and demonstrates the positive impact of banking development on the 

ecosystems of the Nordic nations. In contrast, the LEFP variable showed negative correlations with both LSMC 

and LURBA, indicating that increasing levels of urbanization and stock market capitalization are detrimental to the 

biodiversity in the chosen regions. At the 1% level, the LSMC variable is significant for each of the three estimation 

instances. Furthermore, an additional 1% in URBA will result in an elevated LEFP of 0.353% for FMOLS, 0.516% 

for DOLS, and 0.036% for FE-OLS. The variable is significant at the 5% level in the FMOLS estimation but at the 

1% level in the other two scenarios. The ARDL model's conclusions are supported by the LSMC and LURBA data. 

These results thereby verify the ARDL model, which is the primary estimating approach used in this paper. 

Table 8. Result of Robustness check 

 

A panel causality assessment was performed using the Dumitrescu and Hurlin (2012) technique, which made it 

possible to determine if the associations were linear or nonlinear, as illustrated in Table 9. If the p-value is significant 

at the 1%, 5%, or 10% levels, the null hypothesis—which states that the variable under investigation does not 

consistently cause another variable—can be rejected. According to the study, at the 1% level, the p-value of 0.0223 

denotes a statistically significant impact of LGDP on LEFP. Hence, it is possible to reject the null hypothesis and 

establish a unidirectional causal relationship between LGDP and LEFP. On the other hand, as the p-value exceeds 

the crucial levels, no meaningful association is seen between LEFP and LGDP. A greater examination reveals that 

LEFP and LAI have a comparable one-way relationship. The results imply that changes in LEFP have no effect on 

LAI, as the null hypothesis cannot be rejected in this instance. However, statistically significant p-values in all 

research point to a bidirectional link between LEFP and LAI. Furthermore, neither LEFP nor LURBA appear to be 

causally related to one another, according to the p-values. The p-value is below 0.05 and significant at the 1% level, 

indicating a substantial unidirectional causal link between LBD and LEFP. This result enables us to conclude that 

Variables FMOLS DOLS FE-OLS 

LGDP 0.012***(0.0702) 0.285***(0.0892) 0.082***(0.0597) 

LAI -0.023**(0.049) -0.089***(0.0512) -0.026***(0.0426) 

LBD -0.088***(0.0621) -0.287***(0.2170) -0.039***(0.0508) 

LSMC 0.036***(0.073) 0.254***(0.2745) 0.005***(0.0572) 

LURBA 0.353**(0.2340) 0.516***(0.0691) 0.036***(0.8967) 
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banking development has a detrimental effect on the ecosystem and to reject the null hypothesis. To summarize, 

out of all the regressors, the factors that affect LEFP are LGDP, LAI, LBD, LSMC, and LURBA. 

Table 9. Results of the D-H causality test 

Null Hypothesis W-Stat. Zbar-Stat. Prob. 

LGDP  ≠ LEFP 5.06159 2.2851 0.0223 

LEFP ≠  LGDP 4.66212 1.95363 0.0507 

LAI  ≠ LEFP 4.12222 1.50564 0.0322 

LEFP ≠  LAI 7.0682 3.95013 0.2551 

LBD ≠  LEFP 5.02193 2.25219 0.0243 

LEFP ≠  LBD 4.71521 1.99769 0.0458 

LSMC  ≠ LEFP 6.41532 3.40838 0.0007 

LEFP  ≠ LSMC 3.63803 1.10387 0.2696 

LURBA ≠  LEFP 7.69494 4.47018 0.0023 

LEFP ≠  LURBA 3.52225 1.0078 0.3135 

 

Conclusion and Policy Implications  

In this paper, we investigated the factors influencing the EFP in Nordic countries from 1995 to 2021 using the 

ARDL framework and the STIRPAT model. Our study sought to determine the main drivers of environmental 

deterioration while making recommendations for future legislation about green practices. The ARDL technique 

makes a detailed examination of the intricate relationships between the dependent and explanatory variables 

possible. The study finds an unexpectedly strong positive correlation between ecological footprint, stock market 

value, and GDP per capita, which contradicts our assumptions. This suggests that financial activity and economic 

progress harm biodiversity. 

The study also emphasizes the detrimental effects of urbanization on the ecological footprint, demonstrating a 

positive association between LEFP and LURBA and highlighting the necessity of sustainable urban planning in 

Nordic countries. Furthermore, the analysis indicates advantageous patterns that suggest a correlation between the 

advancement of banking, the integration of AI technology, and upgrades in environmental quality. These findings 

point to the possibility of incorporating environmental factors with the goals of sustainable development and eco-

friendly behaviors into socio-economic strategies. Our analytical framework was rigorously tested using FMOLS, 

DOLS, and FE-OLS techniques. The Dumitrescu and Hurlin (D-H) causality tests were employed to examine the 

causal linkages among the variables. The findings indicated unidirectional causality between LGDP and LEFP, LAI 

and LEFP, LSMS and LEFP, and LEFP and LURBA. For stakeholders and legislators dedicated to advancing green 

policies and sustainable growth in these nations, this study offers insightful information about the evolving patterns 

of the ecological footprint in the Nordic region. 

Based on the research that shows how economic growth, stock market capitalization, and urbanization contribute 

to the ecological footprint in the Nordic region, it is crucial to implement specific policy suggestions to reduce the 

environmental impact. Initiate sustainable economic growth by using green technologies and renewable energy 

sources to diminish carbon emissions and resource exhaustion. In addition, promotes ecologically conscious 

investment practices in the stock market by offering incentives to companies that embrace sustainable business 

strategies and disclose their environmental footprint. Moreover, stringent urban planning regulations should be 
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enforced to manage the expansion of cities, improve the quality of green areas, and encourage the construction of 

environmentally sustainable infrastructure. Furthermore, it is crucial to enhance both public and private funding for 

research and development in order to promote sustainable technologies and ideas. Additionally, implement and 

uphold rigorous environmental regulations and standards for industries in order to minimize pollution and waste. 

In addition, public awareness and education initiatives should be implemented to promote sustainable consumption 

patterns and minimize the ecological impact. Engage in cooperative efforts with international organizations and 

neighboring countries to exchange successful methods and establish collective projects aimed at preserving the 

environment. Lastly, consistently oversee and assess the efficiency of these strategies and make essential 

modifications to guarantee ongoing advancement towards sustainability objectives.  

In order to leverage the inverse relationship between AI advancement and environmental impact in the Nordic 

region, authorities should prioritize investing in eco-friendly AI technologies that encourage sustainability, such as 

those that improve energy efficiency and waste management. It is essential to create strong legislative frameworks 

that encourage the advancement and adoption of environmentally friendly AI technologies. One way to accomplish 

this is by providing tax incentives, grants, and subsidies to corporations and research institutes that prioritize the 

use of AI to minimize environmental harm. In addition, the success of these activities can be maximized by 

promoting public-private partnerships, which involve merging resources and expertise. By implementing these 

strategies, the Nordic area may enhance its AI capabilities while also promoting its dedication to ecological 

sustainability. 

Policymakers have to concentrate on incorporating sustainable finance practices into the banking industry since the 

study indicates a negative correlation between the expansion of banking and the ecological footprint in the Nordic 

area. Promoting green banking efforts is one way to do this, such as giving loans intended for renewable energy 

projects or environmental projects better interest rates. To guarantee that their funding promotes low-impact and 

sustainable businesses, financial institutions should also be urged to implement strict environmental, social, and 

governance (ESG) standards in their investment portfolios. Regulators may improve this by giving banks explicit 

instructions and financial incentives to prioritize green investments and integrate sustainability into their lending 

procedures. Moreover, enforcing stricter reporting requirements and enhancing transparency about the 

environmental effect of projects financed by banks will encourage the adoption of more responsible banking 

practices and help hold institutions accountable. The Nordic area can maintain economic growth while drastically 

lowering its ecological imprint by coordinating banking expansion with ecological sustainability. 
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